September 14, 2020

Via Email: cpc@calgary.ca

Calgary Planning Commission The City of Calgary P.O. Box 2100, Station "M" Calgary, AB T2P 2M5

Attention: Matthias Tita, Chair Kimberly Holberton

Dear Mr. Chair and Commissioners:

RE: CPC Meeting September 13, 2020 – Agenda Item 7.2.3 Land Use Amendment application LOC2020-0065/CPC2020-0990 Property: 3625 12 Street NE; Funeral Home and Crematorium

Square One Properties Ltd. is the registered owner of the property 1231 36 Avenue NE, located to the immediate west of the proposed Funeral Home and Crematorium location.

Kindly accept the attached correspondence from our company to Ms. Sarah Hbeichi, File Manager, regarding the subject application. We respectfully request that you consider our submission during the review of the Administration Report.

Despite the information mentioned in the Administration Report, the applicant's public engagement about the application was less than transparent. Neither the applicant nor the property owners of the site contacted us or our tenants.

For the reasons outlined in the attached letter, we are opposed to the proposed land use amendment. From a planning and transportation perspective, the subject parcel is an inappropriate location for the use of a funeral home.

Yours truly,

SQUARE ONE PROPERTIES LTD.

Dan Brink, President

Encl.: Letter Square One Properties Ltd. to File Manager Report JCB Engineering Ltd.

Cc: CPC Members

PAC@calgary.ca & Kimberly.Holberton@calgary.ca Ray Jones - Ward Councillor (<u>ray.jones@calgary.ca</u>) Sarah Hbeichi

June 17, 2020

P.O. Box 27103 Calgary, AB T3L 2Y1

Attn: Vyetta Sunderland, Property Manager

Re: Transportation Impact Assessment – Northeast Funeral Home Land Use Amendment Calgary, Alberta LOC 2020 – 0065

JCB Engineering Ltd. (JCB) is pleased to present this preliminary transportation impact assessment (TIA) in opposition of a land use amendment for a proposed funeral home in the northeast of the City of Calgary, located at 3625 12 Street NE.

1. Development Information

The proposed development is on a site on the west side of 12 Street NE, between the intersections of 34 Avenue NE and 36 Avenue NE. The existing building on the site has a footprint of 681 m²; it is not known from the application submitted to the City for the land use amendment if this existing building will be repurposed or demolished for a new building. The intended use of the site is for a funeral home with a crematorium; no further details have been provided in the application.

2. Land Use Bylaw Parking Requirements

Based on the City of Calgary Land Use Bylaw (LUB) a 'funeral home' (Part 4, Division 1, Section 200) has the same calculations for the capacity of the assembly area as a 'place of worship' (Part 4, Division 1, Sections 260 to 262). No information has been provided on the size of the assembly area for the proposed funeral home, the only area is the overall footprint of the building of 681 m². As there will be the assembly area, crematorium, offices, and other minor uses within the building, it is assumed that the assembly area in the building will be 300 m², the maximum size for an assembly area for a 'place of worship – small' in the Calgary LUB. This is just below 50% of the total building footprint area, and so is a reasonable assumption to make.

The parking requirements, for both staff and visitors, of a 'funeral home' in the LUB is a combination of:

- 2.0 motor vehicle parking stalls per 100.0 m² of gross useable floor area for non-assembly areas
- 1.0 motor vehicle parking stalls per 4 person capacity of the assembly area

As the assembly areas of funeral homes typically have non-fixed seating (i.e. individual chairs), the calculation of the capacity of the assembly area from the LUB is 1 person per 0.75 m². For the assumed area of 300 m^2 , this results in a capacity of 400 people.

The total number of vehicle parking stalls required from the LUB are as follows:

- 2.0 motor vehicle parking stalls per 100.0 m² for 381 m² 8 stalls
- 1.0 motor vehicle parking stalls per 4 person capacity for 400 people 100 stalls

This is a total of 108 parking stalls required on the site as per the City of Calgary LUB to support the proposed land use of a 'funeral home'.

3. Trip and Parking Generation

To determine what impact this proposed land use may have on the transportation network the expected trip and parking generation had to be calculated.

The Institute of Transportation Engineers (ITE) Trip Generation Manual does not have a land use specific to the subject development; there is no 'funeral home' or 'crematorium', but it is mentioned in the ITE land use for a 'cemetery' that there are possibly buildings used for memorial services, a mausoleum, and a crematorium included. However, it is not clear from the data which of the sites surveyed for 'cemeteries' which ones had memorial services and if the trip surveys were conducted during a funeral. As a result, another approach was needed to determine the expected trip and parking generation for the proposed funeral home.

As discussed previously, the calculations for the capacity of an assembly area for a 'funeral home' is the same as a 'place of worship' in the City of Calgary LUB. It would also be reasonable to assume that the trip generation for a church would be similar to that of a funeral home of the same size during a memorial service; often memorial services are held in a church or similar religious institution. Using the land use for a 'church' in the ITE trip and parking generation databases, the following information was calculated for a 400 person capacity assembly area:

- 175 to 216 trips generated in the peak hour
- 88 stalls average parking demand

This is based on Sunday data for the 'church' as this is when the primary services were surveyed for the ITE studies; output from the ITE trip and parking generation applications are attached to this letter. Only one peak hour was provided for the Sunday, but values were provided using both an average rate and a best fit distribution equation. Because AM traffic volumes are typically lower in Calgary than PM traffic volumes, it was decided to use the lower peak hour value for the AM peak hour analysis (see *Section 5*) and the higher value for the PM peak hour.

4. Available Parking Supply

There is on-street parking available on 36 Avenue NE north of the subject site and on 34 Avenue NE to the south, but no parking is allowed on 12 Street NE or any public parking areas within the vicinity. All of the parking areas are attached to various businesses.

On both 34 Avenue and 36 Avenue NE there is parking allowed on only one side of each roadway; based on this information there is space for approximately 30 vehicles to park on 34 Avenue NE and 45 vehicles on 36 Avenue NE (east and west of 12 Street NE). This is based on a calculation of the available curb length on both roadways; a survey was not be conducted due to the current situation with the COVID-19 pandemic. With many businesses still closed the typical parking demand in the area could not be accurately collected; anecdotally it was mentioned that on a typical day the majority of on-street parking is in use, but this could not be confirmed.

There is no parking layout plan provided for the subject site in the land use submission, and the site is not currently laid out optimally for parking, the east section of the site is currently used for storage. Based on the area of the site and the standard size of a parking stall and drive aisles for the City of Calgary, it is estimated that 72 parking stalls could be provided on the site. It should be noted that for funeral processions there is usually a staging area required in the parking area, but without a more detailed site plan available there is no information on how much of the potential parking area may have to be used. As a result, the estimate of 72 parking stalls is likely a number that is higher than will actually be able to be accommodated on the site.

When compared to the LUB and ITE calculations, there will be a deficiency in parking on the site, thus requiring visitors to park on 34 Avenue and 36 Avenue NE.

- 16 stall (22%) deficiency based on ITE average parking generation demand
- 36 stall (50%) deficiency based on City of Calgary LUB parking requirements

For a typical service held at the proposed funeral home it can be expected that 16 to 36 vehicles will need to park on the adjacent roadways.

5. Development Generated Traffic Impacts on Adjacent Roadways

The most likely distribution of the trips generated by the proposed funeral home will be to have the majority of trips to and from 32 Avenue NE as this is the nearest arterial roadway and access to Deerfoot Trail to the subject site. There is also the likelihood of trips to and from the north using McKnight Boulevard NE instead of 32 Avenue NE, but this McKnight Boulevard NE is further away from the site, fewer trips would use that route.

2017 intersection traffic counts were available from the City of Calgary on 12 Street NE at both 32 Avenue NE and at McKnight Boulevard NE; and there is a permanent station on McKnight Boulevard NE just west of the interchange with Deerfoot Trail that has counts from 2017 to 2020. The numbers from the month of February were used as comparisons because the volumes decline significantly in March 2020 due to the shutdown measures that were started in that month to contain the COVID-19 pandemic. Using this information 2020 intersection traffic volumes were extrapolated for use in the analysis conducted for this TIA. The signal timing summary for the intersection of 12 Street and McKnight Boulevard NE was provided by the City of Calgary, but the summary for the intersection of 12 Street and 32 Avenue NE was not available in time to use for this study. Signal timings were assumed for this intersection using the parameters from the City of Calgary guidelines and observation of the operation of the traffic signal.

Attached to this letter are spreadsheets illustrating the subject intersections for analysis as schematics, with the pre-development traffic volumes for the intersections of 12 Street and 32 Avenue NE, and 12 Street and McKnight Boulevard NE shown. The distribution of the trips calculated in *Section 3* of this TIA were then assigned to the two intersections to create post-development traffic volumes.

The intersection operational analysis for this TIA was conducted using Synchro (version 8) software, by Trafficware; this software utilizes the Highway Capacity Manual 2010 methodology for determining the level of service of traffic operations. The parameters for Synchro used for this analysis are based on the City of Calgary TIA guidelines, and on site observations; if there is no guideline or observation for a specific parameter, then the default value in the software is utilized. A summary of the results of the traffic operations for the subject intersections is provided in the following tables; the level of service (LOS), highest control delay, maximum volume to capacity ratio (v/c), and longest queue length are provided for each intersection approach. If an intersection approach has unacceptable operations, it is highlighted in the summary table; unacceptable operations are defined as:

- LOS of 'D' or worse; Control delay greater than 35 seconds for traffic signal control
- V/C ratio of greater than 0.90 (volumes are 90% of capacity)
- A queue length for any movement that significantly blocks another movement, or exceeds storage requirements for the movement

Troffic Signal	12 Street and 32 Avenue NE													
Traffic Signal		AM Pea	ak Hour		PM Peak Hour									
Direction	LOS	Delay (sec)	V/C Ratio	Queue (m)	LOS	Delay (sec)	V/C Ratio	Queue (m)						
Eastbound Left	В	10.1	0.80	39	С	32.3	0.75	40						
Eastbound Thru	А	8.8	0.80	126	Α	6.3	0.39	58						
Westbound	А	7.7	0.37	58	В	20.0	0.90	216						
Southbound	С	28.8	0.56	24	С	31.5	0.73	77						

Table 5-1: 2020 Pre-Development Intersection Traffic Operations

Table 5-2: 2020 Post-Development Intersection Traffic Operations

Troffic Cianal	12 Street and 32 Avenue NE												
Traffic Signal		AM Pea	ak Hour		PM Peak Hour								
Direction	LOS	Delay (sec)	V/C Ratio	Queue (m)	LOS	Delay (sec)	V/C Ratio	Queue (m)					
Eastbound Left	В	18.7	0.80	77	С	34.5	0.83	52					
Eastbound Thru	Α	8.8	0.80	177	Α	6.2	0.37	59					
Westbound	Α	7.7	0.37	58	С	26.5	0.93	280					
Southbound	С	28.8	0.56	28	D	38.2	0.76	43					

Note that only the intersection of 12 Street and 32 Avenue NE is summarised in these tables. When the intersection of 12 Street and McKnight Boulevard NE was analysed it was found that the intersection is

JCB Engineering Ltd.; 1305, 8710 Horton Road SW; Calgary, AB; T2V 0P7

failing, all approaches and in both peak hours, this can be seen in the Synchro reports attached to this letter. The volume of traffic that the proposed funeral home is adding to this intersection is an increase of approximately 1%, which is insignificant with regards to impacting the operation of an already failing intersection. Because the majority of trips generated by the development will impact the nearer intersection of 12 Street and 32 Avenue NE, it was decided to focus the analysis on this intersection.

In the AM peak hour, the eastbound left turn movement has a queue that extends beyond the capacity of the auxiliary lane and is expected to spillover into the eastbound through lane on 32 Avenue NE. This is due to the additional development generated traffic turning onto 12 Street NE after coming from the west, most likely Deerfoot Trail. But it is in the PM peak hour that the development generated traffic has a much larger impact to the operations of the 12 Street and 32 Avenue NE intersection. In the pre-development scenario, the westbound approach is at capacity, being at the 90% threshold, so when the post-development scenario was analysed that approach exceeded capacity. Adjustments were made to the signal timing to resolve this issue but providing more green time for the westbound traffic only resulted in unacceptable operations for other movements competing for time within the signal cycle. The results shown in **Table 5-2** was the best compromise that could be achieved for the intersection overall; even then there are unacceptable operations for some movements.

This analysis does not take into account that often funeral processions proceed together along the roadways between the funeral home and final resting place for the deceased. This would create a larger impact to the operation of the subject intersections as temporary traffic control could be used to stop other traffic movements to allow the procession to proceed along their route without being separated by changing traffic signals.

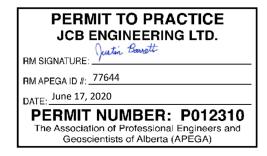
6. Summary of Conclusions

6.1. Parking

It is expected that there will be a shortfall in parking provided on the site for the proposed funeral home, 16 to 36 vehicles will need to park on the adjacent roadways. Information provided anecdotally is that there may not be sufficient parking on the nearby roadways of 34 Avenue NE and 36 Avenue NE to accommodate this shortfall. A complete parking assessment should be provided to demonstrate if there will be a parking shortfall for the development and if so, how this shortfall will be mitigated.

6.2. Traffic

The additional traffic expected to be generated by the funeral home will have an impact on the operation of the intersection of 12 Street and 32 Avenue NE. Primarily during the typical PM peak hour scenario, the intersection will have unacceptable operations due to the westbound approach being over capacity and competing for green time with other movements that have had their volumes increased by development generated traffic. A more detailed and full transportation impact assessment is required to confirm what impacts, and the size of these impacts, the development generated traffic will have on the roadways and intersections in the area.


There will also be an impact of the development generated traffic on the intersection of 12 Street and McKnight Boulevard NE, but this impact is less than at 32 Avenue NE. The intersection at McKnight Boulevard NE is failing under existing conditions and the increase in traffic due to the development does not change this. This does demonstrate that traffic generated by the development is more likely to use the 12 Street and 32 Avenue NE intersection and create the unacceptable operational issues that have been noted in the analysis completed for this study.

It is my professional opinion, the limited information provided with the land use amendment application has resulted in raising issues that need to be addressed before the funeral home land use should be approved.

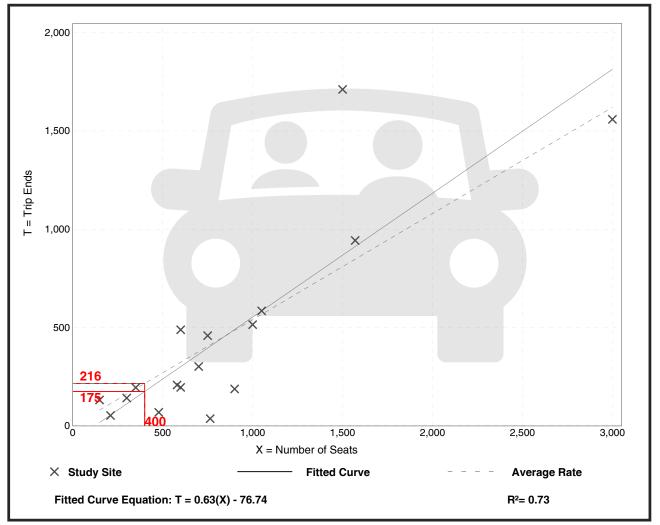
* * * * *

If you wish to discuss any items within this letter, please feel free to contact the undersigned at jcbarrett@jcbengineering.ca or at (403) 714-5798.

Sincerely,

Justin Barrett, P. Eng., PTOE President and Transportation Engineer JCB Engineering Ltd.

Attachments


- ITE Trip Generation Graph
- ITE Parking Generation Graph
- City of Calgary Traffic Counts
- City of Calgary Traffic Signal Timing Summary
- Transportation Network Schematics
- Synchro Output Reports

Church (560) Vehicle Trip Ends vs: Seats On a: Sunday, Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 17 Avg. Num. of Seats: 853 Directional Distribution: 49% entering, 51% exiting

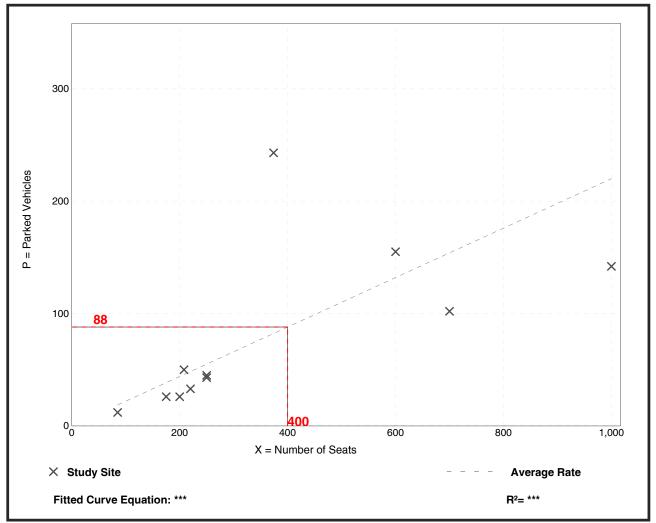
Vehicle Trip Generation per Seat

Average Rate	Range of Rates	Standard Deviation
0.54	0.05 - 1.14	0.28

Data Plot and Equation

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Church


(560)

Seats Sunday General Urban/Suburban 9:00 a.m 1:00 p.m. 11 369
369

Peak Period Parking Demand per Seat

Average Rate	Range of Rates	33rd / 85th Percentile	95% Confidence Interval	Standard Deviation (Coeff. of Variation)
0.22	0.13 - 0.65	0.15 / 0.34	***	0.15 (68%)

Data Plot and Equation

Parking Generation Manual, 5th Edition • Institute of Transportation Engineers

Traffic Count Reports

Intersection Id: 8723

Status:

Valid

Study Date: Location: Wednesday, 28 June 2017

12 ST NE & 32 AV NE (WEST INT)

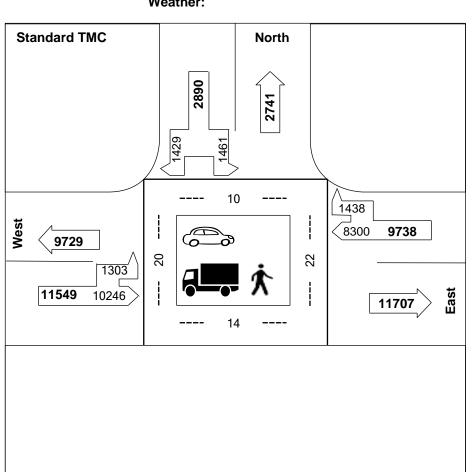
Study Name: 6 Hour Intersection Count

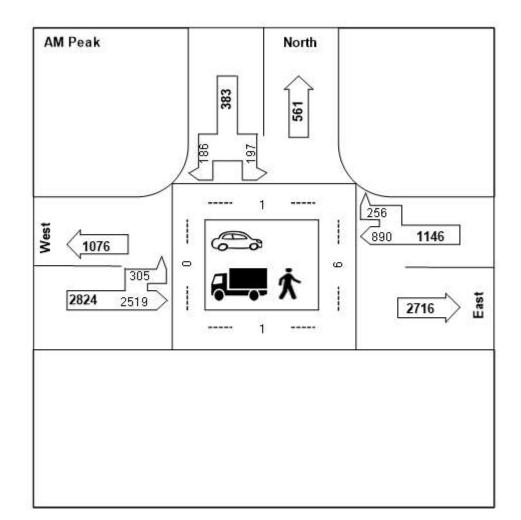
Weather:

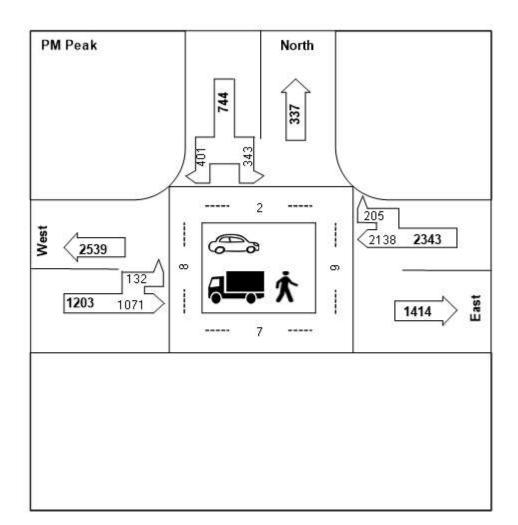
		Ν	orth A	pproa	ch			S	outh A	pproa	ch		East Approach West Approach					Vehicle Total							
Period Begining		North Straight	North Right	North Truck	North Ped	North Bike	South Left	South Straight	South Right	South Truck	South Ped	South Bike	East Left	East Straight	East Right	East Truck	East Ped	East Bike	West Left	West Straight	West Right	West Truck	West Ped	West Bike	
	30	0	18	7	1	0	0	0	0	0	0	0	0	134	59	15	1	0	60	530	0	23	0	0	831
07:15	30	0	21	8	0	1	0	0	0	0	1	3	0	180	38	25	0	2	57	586	0	22	3	0	912
07:30	24	0	23	7	1	0	0	0	0	0	0	2	0	187	76	21	1	0	78	606	0	21	1	0	994
07:45	53	0	31	15	0	0	0	0	0	0	0	0	0	218	90	23	1	0	82	644	0	30	0	0	1118
08:00	45	0	38	9	0	0	0	0	0	0	0	1	0	200	67	21	2	0	82	645	0	19	0	0	1077
08:15	52	0	56	16	0	0	0	0	0	0	1	1	0	222	58	26	2	1	68	610	0	24	0	0	1066
08:30		0	61	12	1	0	0	0	0	0	0	0	0	250	41	35	1	0	73	620	0	32	0	0	1092
08:45	65	0	56	12	0	0	0	0	0	0	1	0	0	239	61	29	2	1	74	582	0	32	1	0	1077
TOTAL		0	304	86	3	1	0	0	0	0	3	7	0	1630	490	195	10	4	574	4823	0	203	5	0	<u>8167</u>
PEAK		0	186	52	1	0	0	0	0	0	1	2	0	890	256	105	6	1	305	2519	0	105	0	0	<u>4353</u>
		0.89		Total	383		PHF	0		Total	0		PHF	0.93		Total	1146		PHF	0.97		Total	2824		
	Total F		2.7%				Total		0%				Total		8.8%				Total		22.3				
	Truck F		13.2	3%			Truck		0%				Truck		9.2%				Truck		3.76				
	Total V	/olume	650				Total	Volume	0				Total	Volume	2120)			Total	Volume	539	7			
11:00		0	72	14	2	0	0	0	0	0	0	0	0	331	51	19	0	0	58	363	0	24	0	0	946
11:15		0	56	9	0	0	0	0	0	0	0	0	0	351	57	25	0	0	54	435	0	26	0	0	1006
11:30		0	74	11	0	0	0	0	0	0	0	0	0	336	57	18	0	0	62	424	0	30	2	0	1012
11:45		0	63 	7	1	0	0	0	0	0	1	0	0	326	81	18	0	0	52	417	0	35	0	0	1024
12:00		0	75	10	1	0	0	0	0	0	0	0	0	305	91	13	0	0	46	387	0	26	2	0	1014
12:15		0	47	6	1	0	0	0	0	0	0	0	0	323	78	21	0	0	54	389	0	26	0	0	952
		0	61	5	0 0	0	0	0	0	0	0	0	0	351	77	15	0	0	41	360	0	14	0	0	957
12:45		0	61	/		0		0	0	0	1	0		356	71	12	0	0	68	430	0	21	1	-	1064
TOTAL		0	509	69	5	0	0	0	0	0	2	0	0	2679	563	141	0	0	435	3205	0	202	5	0	<u>7975</u>
PEAK		0	268	37	2	0	0	0	0	0	1	0	0	1318	286	74	0	0	214	1663	0	117	4	0	<u>4056</u>
		0.78	Peak	Total	575		PHF	0	Peak	Total	0		PHF	0.98	Peak	Total	1604		PHF	0.96	Peak	Total	1877		
	Total F	low	4.5%	, D			Total	Flow	0%				Total	Flow	13.49	%			Total	Flow	15.1	%			
	Truck F		6.31	%			Truck		0%				Truck		4.35	%			Truck		5.55	%			
	Total V	/olume	1093	3			Total	Volume	0				Total	Volume	3242	2			Total	Volume	3640)			
16:00	78	0	88	10	1	1	0	0	0	0	2	0	0	601	54	18	1	0	15	284	0	20	2	0	1120
16:15	93	0	92	8	1	3	0	0	0	0	3	0	0	494	61	8	2	0	35	248	0	17	4	0	1023
16:30	100	0	145	6	0	3	0	0	0	0	2	0	0	513	48	19	2	1	35	296	0	16	2	0	1137
16:45	72	0	76	5	0	0	0	0	0	0	0	0	0	530	42	15	4	0	47	243	0	12	0	0	1010
17:00		0	82	7	0	1	0	0	0	0	2	0	0	574	51	8	2	1	27	296	0	23	2	0	1100
17:15		0	58	4	0	2	0	0	0	0	0	0	0	477	55	11	1	0	39	255	0	23	0	0	933
17:30		0	42	1	0	0	0	0	0	0	0	0	0	446	39	6	0	0	44	305	0	15	0	0	921
17:45	24	0	33	5	0	0	0	0	0	0	0	0	0	356	35	13	0	0	52	291	0	20	0	0	791
TOTAL		0	616	46	2	10	0	0	0	0	9	0	0	3991	385	98	12	2	294	2218	0	146	10	0	<u>8035</u>
PEAK		0	401	29	2	7	0	0	0	0	7	0	0	2138	205	60	9	1	132	1071	0	65	8	0	<u>4290</u>
	PHF (Peak	Total	744		PHF	0	Peak	Total	0		PHF	0.89	Peak	Total	2343		PHF	0.91	Peak	Total	1203		
	Total F		4.7%	, D			Total		0%				Total		18.19	%			Total		10.4	%			
	Truck F		4.01	%			Truck		0%				Truck	Flow	2.24	%			Truck		5.81	%			
	Total V	/olume	1147	7			Total	Volume	0				Total	Volume	4376	6			Total	Volume	2512	2			
6 Hour Total	1461	0	1429	201	10	11	0	0	0	0	14	7	0	8300	1438	434	22	6	1303	10246	0	551	20	0	24177
4 Hour Total	877	0	920	Total	1797	,	0	0	0	Total	l: 0		0	5621	875	Tot	al: 649	6	868	7041	0	То	otal: 79	909	16202
		ound:	2741 -					Bound:	0 - 0%				East B	مريمها	44707	- 55%			West E	Dound	9729	469/			

	South Bound: Total:	2890 - 51% 5631	North Bound: Total:	0 - 0% 0	West Bound: Total:	9738 - 45% 21445	East Bound: Total:	11549 - 54% 21278	
Frequent bac	ckups in lanes a	accessing southbound Dee	rfoot.						

Intersection Id: 8723


Status: Valid


Study Name: Standard TMC Diagrams Study Date: Wednesday, 28 June 2017


12 ST NE & 32 AV NE (WEST INT)

Weather:

Location:

Information contained herein is intended, designed, and collected for specific municipal purposes and may not be suitable for other applications. The City of Calgary accepts no responsibility or liability which may arise from any incorrect or incomplete data or results, or for any improper or inappropriate use or interpretation made by any person

Traffic Count Reports

Intersection Id: 8709

Status:

natuo.

Valid

Study Date: Location:

Weather:

Thursday, 29 June 2017

MCKNIGHT BV NE & AVIATION BV NE

Study Name: 6 Hour Intersection Count

North Bound:

5720 - 54%

		Ν	orth A	pproa	ch			S	outh A	pproa	ch			I	East A	pproac	h			١	Nest A	pproac	:h		Vehic Tota
Period Begining	North Left	North Straight	North Right	North Truck	North Ped	North Bike	South Left	South Straight	South Right	South Truck	South Ped	South Bike	East Left	East Straight	East Right	East Truck	East Ped	East Bike	West Left	West Straight	West Right	West Truck	West Ped	West Bike	
	57	29	43	10	0	1	17	23	7	10	0	1	13	209	76	21	0	0	64	454	115	15	0	1	1107
7:15	43	38	36	8	0	1	20	33	10	7	0	2	15	250	91	22	0	0	72	526	98	11	0	0	1232
7:30	75	36	57	23	0	0	21	30	19	9	1	0	24	284	117	30	0	0	103	569	117	28	0	0	1452
7:45	85	56	54	17	0	2	31	46	10	5	1	1	35	306	108	29	0	0	85	578	178	20		0	1572
8:00	76	39	47	21	0	0	18	30	15	6	0	1	33	310	80	34	0	0	64	530	128	26	0	1	1370
3:15	63 50	35	52	23	0	1	30	29	16	9	0	0	34	314	84	39	0	0	76	545	111	27		0	1389
3:30 3:45	56 78	42 42	98 79	30 21	0 0	2	36 30	29 21	24 16	11 6	0 1	0	23 24	328 270	84 73	27 23	0 0	0	80 75	492 485	85 116	20 16	-	0	1377 1309
TOTAL	533	317	466	153	0	7	203	241	117	63	3	5	201	2271	713	225	0	0	619	4179	948	163	2	2	10808
PEAK	299	166	210	84	0	3	100	135	60	29	2	2	126	1214	389	132	0	0	328	2222	534	101		1	5783
	PHF	0.87	Peak	Total	675		PHF	0.85	Peak	Total	295		PHF	0.96	Peak	Total	1729		PHF	0.92	Peak	Total	3084		
	Total		4.1%		010		Total I		1.8%		200		Total I		10%		1720		Total		18.1		0001		
	Truck	Flow	11.6				Truck	Flow	11.2				Truck	Flow	7.06				Truck	Flow	2.84				
	Total	Volume	1316	6			Total	Volume	561				Total	Volume	3185	5			Total	Volume	5746	6			
1:00	81	29	80	20	0	0	41	32	33	13	0	0	21	301	78	36	0	0	71	290	64	22	0	0	1121
	75	41	111	19	1	0	61	40	36	10	0	0	25	262	88	31	1	0	77	297	64	30	0	1	1177
1:30	103	37	112	18	1	0	47	43	31	6	0	0	19	321	127	34	0	0	80	321	65	27		0	1306
:45	90	45	86	24	0	0	62	41	27	4	0	0	21	292	122	26	2	0	75	320	67	20	-	0	1248
2:00	108	55	101	17	0	0	48	62	28	7	0	0	26	326	122	22	1	0	70	315	49	25	-	0	1310
2:15 2:30	103 94	56 60	111 117	13 28	0 0	0	45 56	62 41	32 28	9 11	1 0	0	28 29	302 349	113 168	27 23	1	0	102 63	307 371	62 60	35 29		0	1323 1436
2:45	76	50	113	14	0	1	58	49	35	13	0	0	22	282	147	29	1	1	100	329	69	34	9	1	1330
TOTAL	730	373	831	153	2	1	418	370	250	73	1	0	191	2435	965	228	7	1	638	2550	500	222		2	<u>10251</u>
PEAK	381	221	442	72	0	1	207	214	123	40	1	0	105	1259	550	101	4	1	335	1322	240	123	10	1	<u>5399</u>
	PHF	0.96	Peak	Total	1044		PHF	0.96	Peak	Total	544		PHF	0.88	Peak	Total	1914		PHF	0.95	Peak	Total	1897		
	Total	Flow	6.1%	, 0			Total I	-low	3.3%)			Total I	Flow	11.3	8%			Total	Flow	11.6	%			
	Truck	Flow	7.91	%			Truck	Flow	7.03	%			Truck	Flow	6.35	i%			Truck	Flow	6.02	%			
	Total	Volume	1934	1			Total	Volume	1038	5			Total	Volume	3597	1			Total	Volume	3688	3			
6:00	96	37	119	10	0	0	90	55	63	7	0	0	22	407	173	15	1	0	59	328	26	26		0	1475
6:15	130	32	89	10	0	0	63	56	38	7	0	0	15	440	149	14	2	0	51	309	25	17		0	1397
5:30	114	26	114	4	0	0		56	66 25	7	1	0	12	366	148	13	1	0	48	342	33	17	-	0	1438
6:45 7:00	113 109	23 22	81 93	9 10	0 0	3 0	53 82	70 101	35 49	10 9	0 0	1	13 17	450 370	150 178	14 9	0	0	40 40	301 243	25 28	15 22	0 0	1	1354 1332
7:15	80	24	66	7	0	0	50	65	43 34	3 17	0	0	15	434	172	12	1	0	40	311	20	14		0	1312
7:30	100	19	56	7	0	0	52	81	27	18	0	1	13	364	142	8	0	1	47	335	29	10	0	1	1265
7:45	72	17	67	4	0	0	34	53	24	15	0	0	19	354	150	16	0	0	50	319	26	11	0	0	1185
TOTAL	814	200	685	61	0	3	537	537	336	90	1	3	126	3185	1262	101	6	2	375	2488	213	132	1	3	10758
PEAK	453	118	403	33	0	3	319	237	202	31	1	1	62	1663	620	56	4	0	198	1280	109	75	0	1	<u>5664</u>
	PHF	0.96	Peak	Total	974		PHF	0.81	Peak	Total	758		PHF	0.96	Peak	Total	2345		PHF	0.94	Peak	Total	1587		
	Total	Flow	5.3%	, D			Total I	-low	4.4%	0			Total I	Flow	14.4	%			Total	Flow	9.7%	/ 0			
	Truck	Flow	3.59	%			Truck	Flow	6.38	%			Truck	Flow	2.21	%			Truck	Flow	4.29	%			
	Total	Volume	1699	9			Total	Volume	1410)			Total	Volume	4573	3			Total	Volume	3076	6			
Hour Total	2077	890	1982	367	2	11	1158	1148	703	226	5	8	518	7891	2940	554	13	3	1632	9217	1661	517	13	7	31817
					-						-				_0 /0					<i></i>				·	
Hour Total	1347	517	1151	Total	l: 3015	5	740	778	453	Total	: 1971		327	5456	1975	Tot	al: 775	68	994	6667	1161	Тс	otal: 88	22	21566

		South Bound: Total:	4949 - 46% 10669	North Bound: Total:	3009 - 50% 6078	West Bound: Total:	11349 - 49% 23346	East Bound: Total:	12510 - 53% 23541	
Northb	ound rig	ht turn often	treated as double turn lane	. Traffic backu	ips on northbound left turn	(12St).				

East Bound:

11997 - 51%

West Bound:

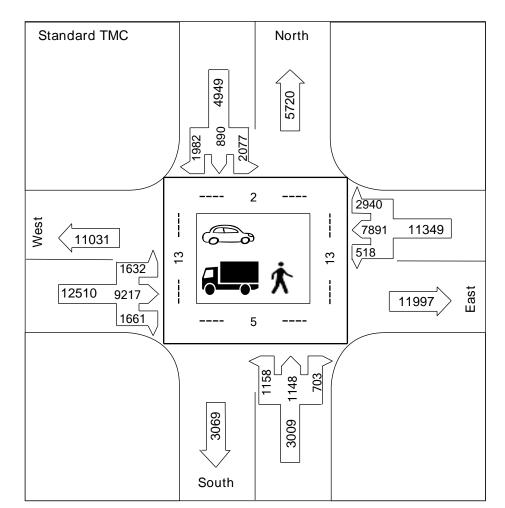
11031 - 47%

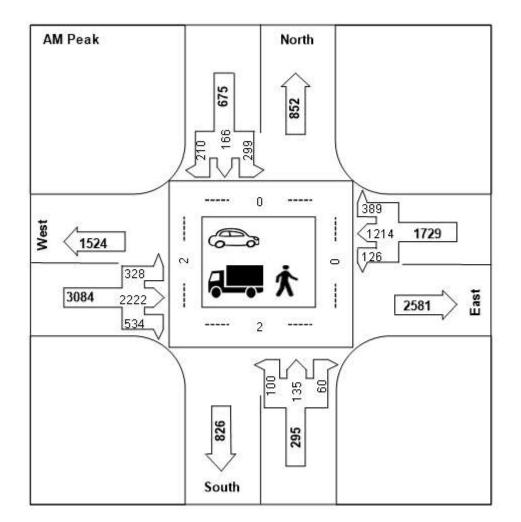
South Bound: 3069 - 50%

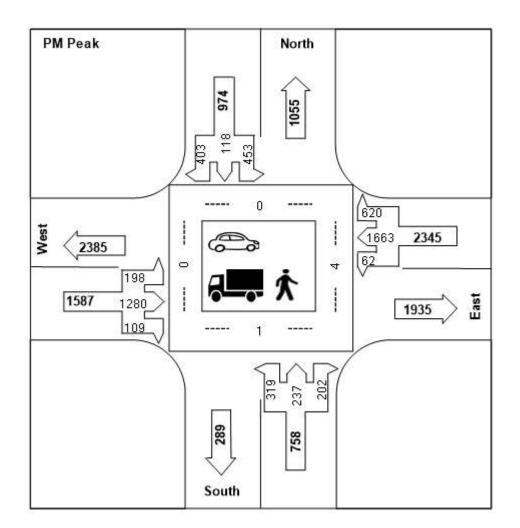
Intersection Id: 8709

Status:

Study Name: Standard TMC Diagrams


Valid


Study Date:


MCKNIGHT BV NE & AVIATION BV NE

Location: Weather:

Thursday, 29 June 2017

Information contained herein is intended, designed, and collected for specific municipal purposes and may not be suitable for other applications. The City of Calgary accepts no

responsibility or liability which may arise from any incorrect or incomplete data or results, or for any improper or inappropriate use or interpretation made by any person

Traffic Count Reports

Average Annual Weekday Traffic Conversion Factors for 2017

Location: W of the Intersection DEERFOOT TR NE & MCKNIGHT BV NE (Both Directions)

Month/Days Average/Days Factor	Monday	Tuesday	Wednesday	Thursday	Friday	Monthly
January	41496 5	45309 5	46356 4	46879 4	47267 4	45274 22
	1.20	1.10	1.07	1.06	1.05	1.10
February	42263 3	45845 4	46564 4	47666 4	47343 4	46129 19
	1.17	1.08	1.07	1.04	1.05	1.08
March	46151 4	48103 4	48583 5	49125 5	49570 5	48409 23
	1.08	1.03	1.02	1.01	1.00	1.03
April	46944 3	49529 4	50692 4	51029 4	51394 3	50001 18
	1.06	1.00	0.98	0.97	0.97	0.99
Мау	50270 4	51720 5	51793 5	52815 4	53252 4	51951 22
	0.99	0.96	0.96	0.94	0.93	0.96
June	50672 4	52537 4	53280 4	53554 5	53473 5	52777 22
	0.98	0.95	0.93	0.93	0.93	0.94
July	45514 5	49662 4	50761 4	51038 4	50903 4	49382 21
	1.09	1.00	0.98	0.97	0.98	1.01
August	48088 3	50418 5	51186 5	51049 5	50851 4	50497 22
	1.03	0.98	0.97	0.97	0.98	0.98
September	50221 3	51763 4	52474 4	52861 4	53244 5	52264 20
	0.99	0.96	0.95	0.94	0.93	0.95
October	48385 4	51282 5	52051 4	53288 4	54291 4	51832 21
	1.03	0.97	0.95	0.93	0.91	0.96
November	46599 4	49903 4	50735 5	49410 5	49425 4	49292 22
	1.07	1.00	0.98	1.00	1.00	1.01
December	48478 3	48788 3	45777 4	47512 4	48475 5	47754 19
	1.02	1.02	1.08	1.05	1.02	1.04
Yearly	46919 45	49596 51	50063 52	50539 52	50810 51	49655 251
	1.06	1.00	0.99	0.98	0.98	1.00

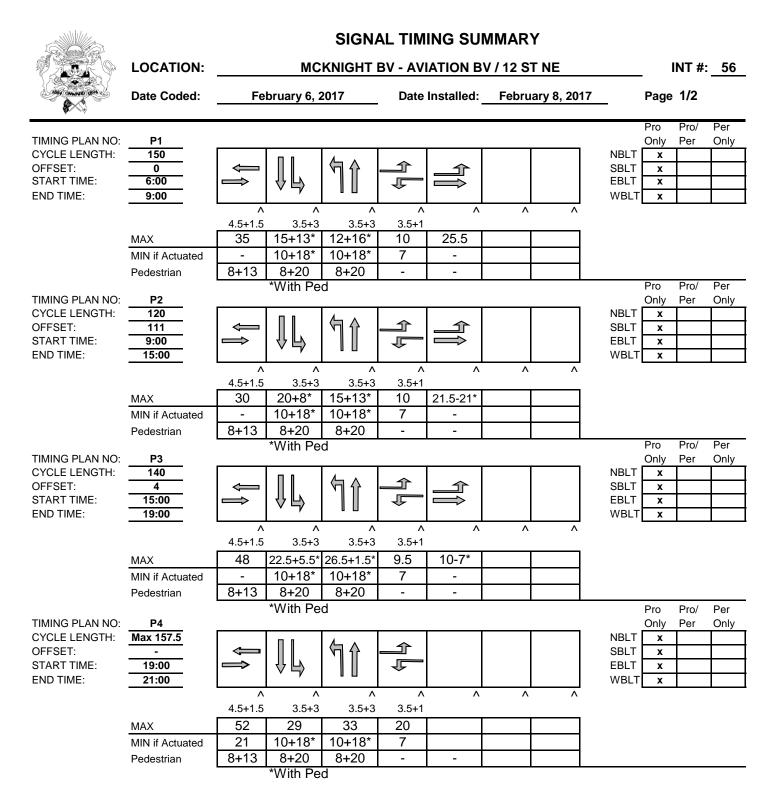
Total Traffic	12463362
Total Days	251
AAWT	49655

AAWT factor calculations do not include statutory holidays or missing data.

Information contained herein is intended, designed, and collected for specific municipal purposes and may not be suitable for other applications. The City of Calgary accepts no responsibility or liability which may arise from any incorrect or incomplete data or results, or for any improper or inappropriate use or interpretation made by any person

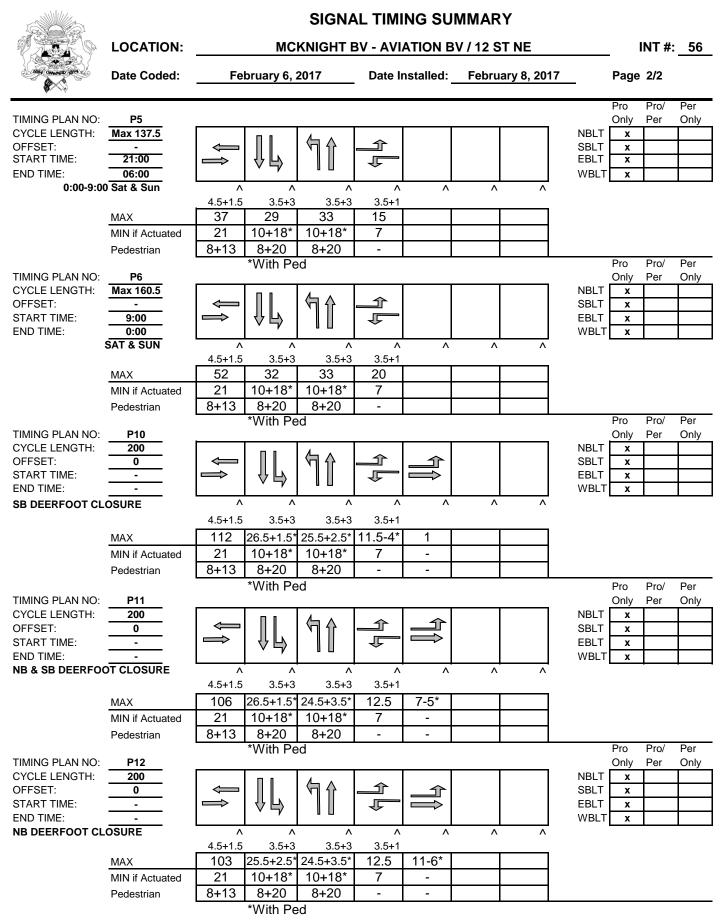
Traffic Count Reports

Average Annual Weekday Traffic Conversion Factors for 2020


Location: W of the Intersection DEERFOOT TR NE & MCKNIGHT BV NE (Both Directions)

Month/Days Average/Days Factor	Monday	Tuesday	Wednesday	Thursday	Friday	Monthly
January	43279 4	43577 4	44875 4	40153 5	38630 5	41856 22
	0.92	0.91	0.88	0.99	1.03	0.95
February	42789 3	49076 4	50638 4	49985 4	49371 4	48666 19
	0.93	0.81	0.78	0.79	0.80	0.82
March	38454 5	38572 5	41380 4	41199 4	39581 4	39717 22
	1.03	1.03	0.96	0.96	1.00	1.00
April	29628 3	30328 4	29989 5	31181 5	30623 3	30396 20
	1.34	1.31	1.32	1.27	1.30	1.31
Мау	35477 3	37399 4	38234 4	37857 4	39258 5	37834 20
	1.12	1.06	1.04	1.05	1.01	1.05
June	40787 1 0.97	41723 1 0.95	0 0	0 0 0 0.00	0 0 0 0.00	41255 2 0.96
July	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	N/A	N/A	N/A	N/A	N/A	N/A
August	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	N/A	N/A	N/A	N/A	N/A	N/A
September	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	N/A	N/A	N/A	N/A	N/A	N/A
October	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	N/A	N/A	N/A	N/A	N/A	N/A
November	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	N/A	N/A	N/A	N/A	N/A	N/A
December	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	N/A	N/A	N/A	N/A	N/A	N/A
Yearly	38414 19	39823 22	40498 21	39674 22	39863 21	39680 105
	1.03	1.00	0.98	1.00	1.00	1.00

Total Traffic4166362Total Days105AAWT39680

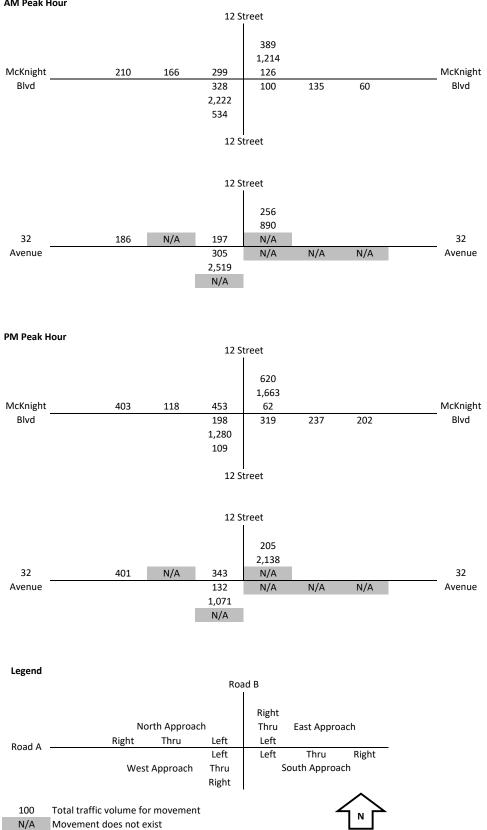

AAWT factor calculations do not include statutory holidays or missing data.

Information contained herein is intended, designed, and collected for specific municipal purposes and may not be suitable for other applications. The City of Calgary accepts no responsibility or liability which may arise from any incorrect or incomplete data or results, or for any improper or inappropriate use or interpretation made by any person

Notes: The offset point is referenced to the beginning of the first column of traffic movements.

If the max time is less than the pedestrian time, the extra unused pedestrian time is passed to the main street unless otherwise noted. If any of the summary is unclear, please contact the Signals Division with the City of Calgary, by phoning 311.

Notes: The offset point is referenced to the beginning of the first column of traffic movements.

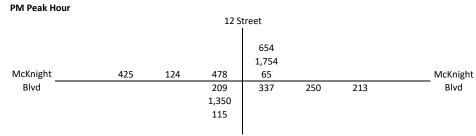

If the max time is less than the pedestrian time, the extra unused pedestrian time is passed to the main street unless otherwise noted. If any of the summary is unclear, please contact the Signals Division with the City of Calgary, by phoning 311.

Peak Hour Traffic Volumes

Scenario: Collected Traffic Counts Year: 2017

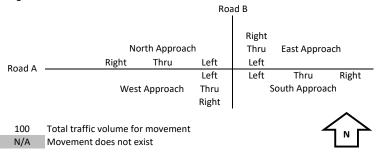
AM Peak Hour

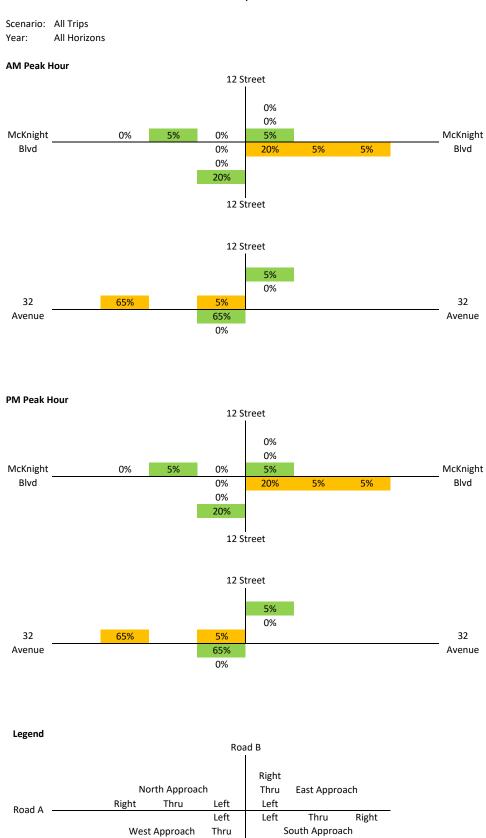
N/A


Peak Hour Traffic Volumes

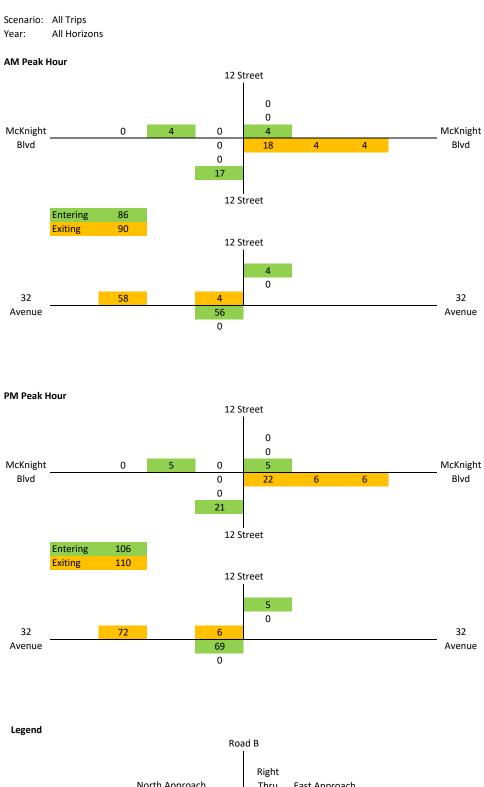
Scenario:	Pre-Development	2017 Permanent Station Count:	46,129
Year:	2020	2020 Permanent Station Count:	48,666
		Annual Growth Rate:	1.8%
		Total Growth:	1.055

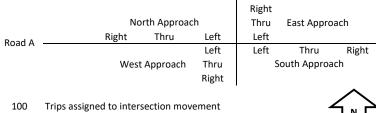
AM Peak Hour





Legend

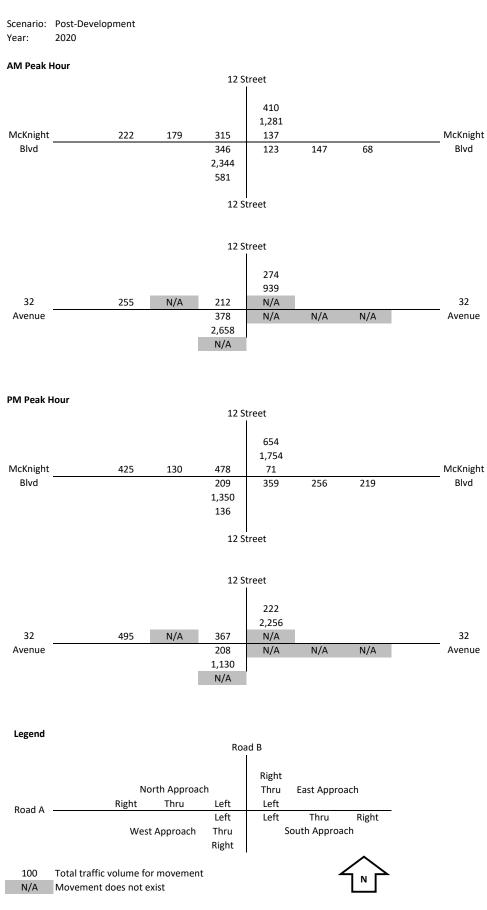




100% Percent of distribution based on total trips 100% Entering trips 100% Exiting trips

Right

West Approach



100 Exiting trips

100 Entering trips

Peak Hour Traffic Volumes

Queues 1: 32 Avenue & 12 Street

	٦	-	-		1	~
						-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	332	2740	1010	290	234	220
v/c Ratio	0.53	0.82	0.60	0.44	0.47	0.55
Control Delay	9.5	11.3	20.0	7.8	29.6	10.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.5	11.3	20.0	7.8	29.6	10.3
Queue Length 50th (m)	11.1	77.0	37.2	6.8	15.5	1.2
Queue Length 95th (m)	38.9	125.8	57.6	27.2	23.6	17.3
Internal Link Dist (m)		180.4	169.9		282.4	
Turn Bay Length (m)	60.0			20.0		20.0
Base Capacity (vph)	625	3333	1683	656	1249	699
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.82	0.60	0.44	0.19	0.31
Intersection Summary						

	≯	-	+	•	1	∢
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	^	^	1	ኘኘ	1
Volume (veh/h)	322	2658	939	270	208	196
Number	5	2000	6	16	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	•	•	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1779	1779	1697	1697	1637	1637
Adj Flow Rate, veh/h	332	2740	1010	0	234	0
Adj No. of Lanes	1	3	3	1	2	1
Peak Hour Factor	0.97	0.97	0.93	0.93	0.89	0.89
Percent Heavy Veh, %	4	4	9	9	13	13
Cap, veh/h	486	3441	2754	857	428	197
Arrive On Green	0.07	0.71	0.59	0.00	0.14	0.00
Sat Flow, veh/h	1694	5016	4786	1443	3025	1392
Grp Volume(v), veh/h	332	2740	1010	0	234	0
Grp Sat Flow(s), veh/h/ln	1694	1619	1544	1443	1512	1392
Q Serve(g_s), s	5.0	26.4	7.9	0.0	5.0	0.0
Cycle Q Clear(g_c), s	5.0 5.0	26.4 26.4	7.9 7.9	0.0	5.0 5.0	0.0
Prop In Lane	5.0 1.00	20.4	1.9	1.00	5.0 1.00	1.00
Lane Grp Cap(c), veh/h	486	3441	0754	857	428	1.00
V/C Ratio(X)			2754			
	0.68	0.80	0.37	0.00	0.55	0.00
Avail Cap(c_a), veh/h	486	3441	2754	857	1253	577
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.73	0.00
Uniform Delay (d), s/veh	6.2	6.8	7.4	0.0	28.0	0.0
Incr Delay (d2), s/veh	3.9	2.0	0.4	0.0	0.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.8	12.1	3.5	0.0	2.2	0.0
LnGrp Delay(d),s/veh	10.1	8.8	7.7	0.0	28.8	0.0
LnGrp LOS	В	А	А		С	
Approach Vol, veh/h		3072	1010		234	
Approach Delay, s/veh		9.0	7.7		28.8	
Approach LOS		А	А		С	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		55.6		14.4	8.0	47.6
Change Period (Y+Rc), s		6.0		4.5	3.0	6.0
Max Green Setting (Gmax), s		30.5		29.0	5.0	22.5
Max Q Clear Time (g_c+I1), s		28.4		7.0	7.0	9.9
Green Ext Time (p_c), s		2.1		1.5	0.0	12.2
Intersection Summary					0.0	
			0.7			
HCM 2010 Ctrl Delay			9.7			
HCM 2010 LOS			А			

	4	~	٦	*
Phase Number	2	4	5	6
Movement	EBTL	SBL	EBL	WBT
Lead/Lag		502	Lead	Lag
Lead-Lag Optimize			Yes	Yes
Recall Mode	C-Min	None	None	C-Min
Maximum Split (s)	36.5	33.5	8	28.5
Maximum Split (%)	52.1%	47.9%	11.4%	40.7%
Minimum Split (s)	26	33.5	8	27
Yellow Time (s)	4.5	3.5	3	4.5
All-Red Time (s)	1.5	1	0	1.5
Minimum Initial (s)	20	10	5	20
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)		8		8
Flash Dont Walk (s)		21		13
Dual Entry	Yes	No	No	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	62	28.5	62	0
End Time (s)	28.5	62	0	28.5
Yield/Force Off (s)	22.5	57.5	67	22.5
Yield/Force Off 170(s)	22.5	36.5	67	9.5
Local Start Time (s)	62	28.5	62	0
Local Yield (s)	22.5	57.5	67	22.5
Local Yield 170(s)	22.5	36.5	67	9.5
Intersection Summary				
Cycle Length			70	
Control Type	Actua	ted-Coor	dinated	
Natural Cycle			90	
Offset: 0 (0%), Referenced	to phase 2	:EBTL an	d 6:WBT,	Start of C
Oulite and Dhasses 4,00	A	10.04		
Splits and Phases: 1: 32	Avenue &	12 Street		

ø2 (R) ■	
36.5 s	33.5 s
≠ ≠ ∞ ø5 ↓ ø6 (R)	
8 s 28.5 s	

Queues 4: 12 Street & McKnight Boulevard

	٦	-	$\mathbf{\hat{v}}$	4	-	•	1	1	5	Ļ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	376	2548	612	139	1334	427	112	253	362	201	255	
v/c Ratio	0.85	1.29	0.74	0.61	0.99	0.59	0.68	0.70	1.24	0.34	0.54	
Control Delay	71.4	171.3	21.1	73.4	75.7	7.7	83.5	65.3	182.3	54.9	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	71.4	171.3	21.1	73.4	75.7	7.7	83.5	65.3	182.3	54.9	10.4	
Queue Length 50th (m)	110.6	~370.7	71.4	41.5	~164.1	0.0	37.6	36.9	~139.9	29.1	0.0	
Queue Length 95th (m)	#163.3	#397.3	124.0	#85.4	#217.3	32.2	55.6	47.8	#195.8	40.7	22.3	
Internal Link Dist (m)		184.1			186.5			282.4		181.3		
Turn Bay Length (m)	100.0		100.0	80.0		125.0	80.0		60.0		30.0	
Base Capacity (vph)	449	1977	828	228	1341	723	268	567	292	585	469	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.84	1.29	0.74	0.61	0.99	0.59	0.42	0.45	1.24	0.34	0.54	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum offer two system

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	1	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- ሽ	***	1	ሻ	***	1	ሻ	4î Þ		ሻ	- ††	1
Volume (veh/h)	346	2344	563	133	1281	410	105	142	63	315	175	222
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1796	1796	1796	1729	1729	1729	1667	1667	1850	1652	1652	1652
Adj Flow Rate, veh/h	376	2548	0	139	1334	0	97	205	0	362	201	0
Adj No. of Lanes	1	3	1	1	3	1	1	2	0	1	2	1
Peak Hour Factor	0.92	0.92	0.92	0.96	0.96	0.96	0.85	0.85	0.85	0.87	0.87	0.87
Percent Heavy Veh, %	3	3	3	7	7	7	11	11	11	12	12	12
Cap, veh/h	396	2484	774	110	1613	502	132	278	0	294	586	262
Arrive On Green	0.23	0.51	0.00	0.07	0.34	0.00	0.08	0.08	0.00	0.19	0.19	0.00
Sat Flow, veh/h	1711	4903	1527	1647	4720	1470	1587	3333	0	1573	3138	1404
Grp Volume(v), veh/h	376	2548	0	139	1334	0	97	205	0	362	201	0
Grp Sat Flow(s),veh/h/ln	1711	1634	1527	1647	1573	1470	1587	1667	0	1573	1569	1404
Q Serve(g_s), s	32.5	76.0	0.0	10.0	38.9	0.0	8.9	9.0	0.0	28.0	8.3	0.0
Cycle Q Clear(g_c), s	32.5	76.0	0.0	10.0	38.9	0.0	8.9	9.0	0.0	28.0	8.3	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00	0.0	0.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	396	2484	774	110	1613	502	132	278	0	294	586	262
V/C Ratio(X)	0.95	1.03	0.00	1.27	0.83	0.00	0.73	0.74	0.00	1.23	0.34	0.00
Avail Cap(c_a), veh/h	405	2484	774	110	1613	502	296	622	0	294	586	262
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	0.87	0.87	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	56.8	37.0	0.0	70.0	45.3	0.0	67.1	67.2	0.0	61.0	53.0	0.0
Incr Delay (d2), s/veh	31.7	24.9	0.0	173.6	5.0	0.0	6.6	3.3	0.0	130.7	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	18.8	40.0	0.0	9.8	17.7	0.0	4.2	4.3	0.0	22.8	3.7	0.0
LnGrp Delay(d),s/veh	88.5	61.9	0.0	243.6	50.3	0.0	73.8	70.5	0.0	191.7	53.4	0.0
LnGrp LOS	50.0 F	61.5 F	0.0	240.0 F	00.0 D	0.0	70.0 E	70.0 E	0.0	F	00.4 D	0.0
Approach Vol, veh/h		2924			1473		_	302			563	
Approach Delay, s/veh		65.3			68.5			71.5			142.3	
Approach LOS		65.5 E			E			F 1.5			F	
											I	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	14.5	82.0		34.5	39.2	57.3		19.0				
Change Period (Y+Rc), s	4.5	6.0		6.5	4.5	6.0		6.5				
Max Green Setting (Gmax), s	10.0	60.5		28.0	35.5	35.0		28.0				
Max Q Clear Time (g_c+I1), s	12.0	78.0		30.0	34.5	40.9		11.0				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.3	0.0		1.5				
Intersection Summary												
HCM 2010 Ctrl Delay			74.8									
HCM 2010 LOS			E									
Notos												

Notes

User approved volume balancing among the lanes for turning movement.

	4	**	- \$►	≯	▲	-1
Phase Number	1	2	4	5	6	8
Movement	WBL	EBT	SBTL	EBL	WBT	NBTL
Lead/Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Min	None	None	C-Min	None
Maximum Split (s)	14.5	66.5	34.5	40	41	34.5
Maximum Split (%)	9.7%	44.3%	23.0%	26.7%	27.3%	23.0%
Minimum Split (s)	9.5	27	34.5	9.5	27	34.5
Yellow Time (s)	3.5	4.5	3.5	3.5	4.5	3.5
All-Red Time (s)	1	1.5	3	1	1.5	3
Minimum Initial (s)	5	20	10	5	20	10
Vehicle Extension (s)	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0
Walk Time (s)		8	8		8	8
Flash Dont Walk (s)		13	20		13	20
Dual Entry	No	Yes	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes
Start Time (s)	110	124.5	41	110	0	75.5
End Time (s)	124.5	41	75.5	0	41	110
Yield/Force Off (s)	120	35	69	145.5	35	103.5
Yield/Force Off 170(s)	120	22	49	145.5	22	83.5
Local Start Time (s)	110	124.5	41	110	0	75.5
Local Yield (s)	120	35	69	145.5	35	103.5
Local Yield 170(s)	120	22	49	145.5	22	83.5
Intersection Summary						
Cycle Length			150			
Control Type	Actua	ted-Coor	dinated			
Natural Cycle			150			

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Splits and Phases: 4: 12 Street & McKnight Boulevard

	٨	-	-	*	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	153	1242	2535	243	476	557
v/c Ratio	0.72	0.49	1.21	0.35	0.43	0.93
Control Delay	32.5	13.0	122.1	13.2	21.6	42.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.5	13.0	122.1	13.2	21.6	42.0
Queue Length 50th (m)	11.4	45.8	~189.3	18.1	28.7	62.0
Queue Length 95th (m)	#39.6	57.9	#216.0	35.3	33.7	77.4
Internal Link Dist (m)		180.4	169.9		282.4	
Turn Bay Length (m)	60.0			20.0		20.0
Base Capacity (vph)	213	2547	2103	694	1188	641
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.72	0.49	1.21	0.35	0.40	0.87
Intersection Summary						

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	٠	-+	+	•	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	1	^	***	1	ካካ	1	
Volume (veh/h)	139	1130	2256	216	362	423	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1745	1745	1814	1814	1779	1779	
Adj Flow Rate, veh/h	153	1242	2535	0	476	0	
Adj No. of Lanes	1	3	3	1	2	1	
Peak Hour Factor	0.91	0.91	0.89	0.89	0.76	0.76	
Percent Heavy Veh, %	6	6	2	2	4	4	
Cap, veh/h	205	3189	2830	881	655	301	
Arrive On Green	0.06	0.67	0.57	0.00	0.20	0.00	
Sat Flow, veh/h	1662	4922	5115	1542	3287	1512	
Grp Volume(v), veh/h	153	1242	2535	0	476	0	
Grp Sat Flow(s), veh/h/ln	1662	1588	1650	1542	1643	1512	
QServe(g_s), s	2.8	9.3	36.0	0.0	10.8	0.0	
Cycle Q Clear(g_c), s	2.8	9.3	36.0	0.0	10.8	0.0	
Prop In Lane	1.00			1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	205	3189	2830	881	655	301	
V/C Ratio(X)	0.75	0.39	0.90	0.00	0.73	0.00	
Avail Cap(c_a), veh/h	209	3189	2830	881	1191	548	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.97	0.00	
Uniform Delay (d), s/veh	18.9	5.9	15.0	0.0	30.0	0.0	
Incr Delay (d2), s/veh	13.4	0.4	4.9	0.0	1.5	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	2.8	4.1	17.5	0.0	5.0	0.0	
LnGrp Delay(d),s/veh	32.3	6.3	20.0	0.0	31.5	0.0	
LnGrp LOS	С	А	В		С		
Approach Vol, veh/h		1395	2535		476		
Approach Delay, s/veh		9.1	20.0		31.5		
Approach LOS		А	В		С		
Timer	1	2	3	4	5	6	7 8
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		59.6		20.4	7.8	51.7	
Change Period (Y+Rc), s		6.0		4.5	3.0	6.0	
Max Green Setting (Gmax), s		40.5		29.0	5.0	32.5	
				12.8	4.8	38.0	
Max Q Clear Time (g_c+l1), s		11.3		12.0			
Max Q Clear Time (g_c+11), s Green Ext Time (p_c), s		11.3 27.3		3.1	0.0	0.0	
Green Ext Time (p_c), s			17.8				

	4	~	٨	+*-
Phase Number	2	4	5	6
Movement	EBTL	SBL	EBL	WBT
Lead/Lag			Lead	Lag
Lead-Lag Optimize			Yes	Yes
Recall Mode	C-Min	None	None	C-Min
Maximum Split (s)	46.5	33.5	8	38.5
Maximum Split (%)	58.1%	41.9%	10.0%	48.1%
Minimum Split (s)	26	33.5	8	27
Yellow Time (s)	4.5	3.5	3	4.5
All-Red Time (s)	1.5	1	0	1.5
Minimum Initial (s)	20	10	5	20
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)		8		8
Flash Dont Walk (s)		21		13
Dual Entry	Yes	No	No	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	72	38.5	72	0
End Time (s)	38.5	72	0	38.5
Yield/Force Off (s)	32.5	67.5	77	32.5
Yield/Force Off 170(s)	32.5	46.5	77	19.5
Local Start Time (s)	72	38.5	72	0
Local Yield (s)	32.5	67.5	77	32.5
Local Yield 170(s)	32.5	46.5	77	19.5
Intersection Summary				
Cycle Length			80	
Control Type	Actua	ated-Coord	dinated	
Natural Cycle			110	
Offset: 0 (0%), Referenced t	o phase 2	:EBTL and	d 6:WBT,	Start of G
Splits and Phases: 1: 32 /	Avenue & '	12 Street		

Queues 4: 12 Street & McKnight Boulevard

	٠	-+	7	1	-	*	1	1	1	ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	222	1436	122	68	1827	681	337	651	498	129	443	
v/c Ratio	1.48	0.77	0.19	0.63	1.08	0.78	1.12	0.98	1.47	0.19	1.06	
Control Delay	290.3	41.7	5.5	88.8	89.2	15.5	138.1	78.2	267.4	47.5	97.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	290.3	41.7	5.5	88.8	89.2	15.5	138.1	78.2	267.4	47.5	97.1	
Queue Length 50th (m)	~88.6	137.7	0.0	19.6	~216.6	38.1	~123.6	92.4	~199.0	16.6	~106.0	
Queue Length 95th (m)	#142.4	157.9	13.7	#39.0	#247.4	96.3	#163.5	#110.2	#270.3	26.6	#175.9	
Internal Link Dist (m)		184.1			186.5			282.4		181.3		
Turn Bay Length (m)	100.0		100.0	80.0		125.0	80.0		60.0		30.0	
Base Capacity (vph)	150	1868	657	116	1697	878	301	664	338	676	417	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.48	0.77	0.19	0.59	1.08	0.78	1.12	0.98	1.47	0.19	1.06	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	+	7	1	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	***	1	٦	***	1	٦	4î h		٦	**	1
Volume (veh/h)	209	1350	115	65	1754	654	337	250	213	478	124	425
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1779	1779	1779	1814	1814	1814	1745	1745	1850	1779	1779	1779
Adj Flow Rate, veh/h	222	1436	0	68	1827	0	242	553	0	498	129	0
Adj No. of Lanes	1	3	1	1	3	1	1	2	0	1	2	1
Peak Hour Factor	0.94	0.94	0.94	0.96	0.96	0.96	0.81	0.81	0.81	0.96	0.96	0.96
Percent Heavy Veh, %	4	4	4	2	2	2	6	6	6	4	4	4
Cap, veh/h	151	1945	606	86	1787	556	302	635	0	339	676	302
Arrive On Green	0.09	0.40	0.00	0.05	0.36	0.00	0.18	0.18	0.00	0.20	0.20	0.00
Sat Flow, veh/h	1694	4856	1512	1727	4951	1542	1662	3491	0	1694	3380	1512
Grp Volume(v), veh/h	222	1436	0	68	1827	0	242	553	0	498	129	0
Grp Sat Flow(s), veh/h/ln	1694	1619	1512	1727	1650	1542	1662	1745	0	1694	1690	1512
Q Serve(g_s), s	12.5	35.2	0.0	5.5	50.5	0.0	19.5	21.6	0.0	28.0	4.4	0.0
Cycle Q Clear(\underline{q}_c), s	12.5	35.2	0.0	5.5	50.5	0.0	19.5	21.6	0.0	28.0	4.4	0.0
Prop In Lane	1.00	00.2	1.00	1.00	00.0	1.00	1.00	21.0	0.00	1.00	-1-1	1.00
Lane Grp Cap(c), veh/h	151	1945	606	86	1787	556	302	635	0.00	339	676	302
V/C Ratio(X)	1.47	0.74	0.00	0.79	1.02	0.00	0.80	0.87	0.00	1.47	0.19	0.00
Avail Cap(c_a), veh/h	151	1945	606	117	1787	556	332	698	0.00	339	676	302
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	0.86	0.86	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	63.8	35.7	0.00	65.8	44.7	0.00	54.8	55.7	0.00	56.0	46.6	0.00
Incr Delay (d2), s/veh	242.8	2.6	0.0	22.1	27.2	0.0	10.6	9.5	0.0	226.9	-0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	16.0	16.1	0.0	3.1	27.5	0.0	9.8	11.2	0.0	34.4	2.1	0.0
LnGrp Delay(d),s/veh	306.6	38.3	0.0	87.9	71.9	0.0	65.4	65.2	0.0	282.9	46.7	0.0
LnGrp LOS	500.0	50.5 D	0.0	67.5 F	71.5 F	0.0	60.4 E	60.2 E	0.0	202.9 F	0.7 D	0.0
Approach Vol, veh/h	•	1658		1	1895		L	 795			627	
Approach Delay, s/veh		74.2			72.5			65.3			234.3	
Approach LOS		74.2 E			72.5 E			60.5 E			204.5 F	
Appload I LOO		E			E			E			Г	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.5	62.1		34.5	17.0	56.5		32.0				
Change Period (Y+Rc), s	4.5	6.0		6.5	4.5	6.0		6.5				
Max Green Setting (Gmax), s	9.5	51.0		28.0	12.5	48.0		28.0				
Max Q Clear Time (g_c+l1), s	7.5	37.2		30.0	14.5	52.5		23.6				
Green Ext Time (p_c), s	0.0	12.6		0.0	0.0	0.0		1.9				
Intersection Summary												
HCM 2010 Ctrl Delay			92.3									
HCM 2010 LOS			F									
Notes												

Notes

User approved volume balancing among the lanes for turning movement.

	1		\$►	٠	4	-1
Phase Number	1	2	4	5	6	8
Movement	WBL	EBT	SBTL	EBL	WBT	NBTL
Lead/Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Min	None	None	C-Min	None
Maximum Split (s)	14	57	34.5	17	54	34.5
Maximum Split (%)	10.0%	40.7%	24.6%	12.1%	38.6%	24.6%
Minimum Split (s)	9.5	27	34.5	9.5	27	34.5
Yellow Time (s)	3.5	4.5	3.5	3.5	4.5	3.5
All-Red Time (s)	1	1.5	3	1	1.5	3
Minimum Initial (s)	5	20	10	5	20	10
Vehicle Extension (s)	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0
Walk Time (s)		8	8		8	8
Flash Dont Walk (s)		13	20		13	20
Dual Entry	No	Yes	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes
Start Time (s)	123	137	54	123	0	88.5
End Time (s)	137	54	88.5	0	54	123
Yield/Force Off (s)	132.5	48	82	135.5	48	116.5
Yield/Force Off 170(s)	132.5	35	62	135.5	35	96.5
Local Start Time (s)	123	137	54	123	0	88.5
Local Yield (s)	132.5	48	82	135.5	48	116.5
Local Yield 170(s)	132.5	35	62	135.5	35	96.5
Intersection Summary						
Cvde Length			140			

Cycle Length	140
Control Type	Actuated-Coordinated
Natural Cycle	150

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Splits and Phases: 4: 12 Street & McKnight Boulevard

1 01	▼ ø2 (R)	ø4	√ ø8
14 s	57 s	34.5 s	34.5 s
	● ø6 (R)		
17 s	54 s		

Queues 1: 32 Avenue & 12 Street

	≯	-	-	•	×	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	390	2740	1010	295	238	287
v/c Ratio	0.62	0.85	0.67	0.48	0.43	0.67
Control Delay	15.8	13.9	23.1	9.0	27.0	16.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	15.8	13.9	23.1	9.0	27.0	16.1
Queue Length 50th (m)	20.5	77.5	42.6	8.0	15.8	9.7
Queue Length 95th (m)	#77.4	#177.2	57.6	27.7	21.5	27.7
Internal Link Dist (m)		180.4	169.9		282.4	
Turn Bay Length (m)	60.0			20.0		20.0
Base Capacity (vph)	633	3238	1502	610	1249	699
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.62	0.85	0.67	0.48	0.19	0.41
Intersection Summary						

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

	≯	→	+	×	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	٦	^	^	1	ሻሻ	1	
Volume (veh/h)	378	2658	939	274	212	255	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1779	1779	1697	1697	1637	1637	
Adj Flow Rate, veh/h	390	2740	1010	0	238	0	
Adj No. of Lanes	1	3	3	1	2	1	
Peak Hour Factor	0.97	0.97	0.93	0.93	0.89	0.89	
Percent Heavy Veh, %	4	4	9	9	13	13	
Cap, veh/h	486	3441	2753	857	428	197	
Arrive On Green	0.07	0.71	0.59	0.00	0.14	0.00	
Sat Flow, veh/h	1694	5016	4786	1443	3025	1392	
Grp Volume(v), veh/h	390	2740	1010	0	238	0	
Grp Sat Flow(s),veh/h/ln	1694	1619	1544	1443	1512	1392	
Q Serve(g_s), s	5.0	26.4	7.9	0.0	5.1	0.0	
Cycle Q Clear(g_c), s	5.0	26.4	7.9	0.0	5.1	0.0	
Prop In Lane	1.00			1.00	1.00	1.00	
_ane Grp Cap(c), veh/h	486	3441	2753	857	428	197	
V/C Ratio(X)	0.80	0.80	0.37	0.00	0.56	0.00	
Avail Cap(c_a), veh/h	486	3441	2753	857	1253	577	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.70	0.00	
Uniform Delay (d), s/veh	9.4	6.8	7.4	0.0	28.0	0.0	
lncr Delay (d2), s/veh	9.4	2.0	0.4	0.0	0.8	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	6.4	12.1	3.5	0.0	2.2	0.0	
LnGrp Delay(d),s/veh	18.7	8.8	7.7	0.0	28.8	0.0	
LnGrp LOS	В	А	А		С		
Approach Vol, veh/h		3130	1010		238		
Approach Delay, s/veh		10.1	7.7		28.8		
Approach LOS		В	А		С		
Timer	1	2	3	4	5	6	7 8
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		55.6		14.4	8.0	47.6	
Change Period (Y+Rc), s		6.0		4.5	3.0	6.0	
Max Green Setting (Gmax), s		30.5		29.0	5.0	22.5	
Max Q Clear Time (g_c+I1), s		28.4		7.1	7.0	9.9	
Green Ext Time (p_c), s		2.1		1.6	0.0	12.2	
Intersection Summary							
HCM 2010 Ctrl Delay			10.5				

4	~	≯	4 *
2	4	5	6
EBTL	SBL	EBL	WBT
	022		Lag
		Yes	Yes
C-Min	None		C-Min
36.5	33.5	8	28.5
52.1%	47.9%	11.4%	40.7%
26		8	27
4.5	3.5	3	4.5
1.5	1	0	1.5
20	10	5	20
3	3	3	3
3	3	3	3
0	0	0	0
0	0	0	0
	8		8
	21		13
Yes	No	No	Yes
Yes	Yes	Yes	Yes
62	28.5	62	0
28.5	62	0	28.5
22.5	57.5	67	22.5
22.5	36.5	67	9.5
62	28.5	62	0
22.5	57.5	67	22.5
22.5	36.5	67	9.5
		70	
Actua	ted-Coor	dinated	
		90	
to phase 2:	:EBTL an	d 6:WBT,	Start of G
Avenue & [·]	12 Street		
	EBTL C-Min 36.5 52.1% 26 4.5 1.5 20 3 3 0 0 0 3 3 0 0 0 7 Yes 62 28.5 22.5 22.5 22.5 62 22.5 22.5 62 22.5 22.5	EBTL SBL C-Min None 36.5 33.5 52.1% 47.9% 26 33.5 4.5 3.5 1.5 1 20 10 3 3 0 0 0 0 0 0 0 0 28.5 62 28.5 62 28.5 62 22.5 57.5 22.5 57.5 22.5 36.5 22.5 36.5 22.5 36.5 22.5 36.5	EBTL SBL EBL Lead Yes C-Min None None 36.5 33.5 8 52.1% 47.9% 11.4% 26 33.5 8 4.5 3.5 3 1.5 1 0 20 10 5 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 28.5 62 28.5 62 28.5 62 28.5 62 0 22.5 57.5 67 22.5 36.5 67 62 28.5 62 22.5 57.5 67 22.5 36.5 67 22.5 36.5 67 22.5 36.5 67 22.5 36.5 67 22.5 36.5

ø2 (R) ■	
36.5 s	33.5 s
≠ ≠ ∞ ø5 ↓ ø6 (R)	
8 s 28.5 s	

Queues 4: 12 Street & McKnight Boulevard

	٦	-	\mathbf{r}	4	-	•	1	t	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	376	2548	632	143	1334	427	130	268	362	206	255	
v/c Ratio	0.87	1.29	0.76	0.68	1.01	0.59	0.72	0.69	1.24	0.35	0.54	
Control Delay	74.8	171.3	21.7	79.1	79.9	7.8	84.5	63.0	182.3	55.1	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	74.8	171.3	21.7	79.1	79.9	7.8	84.5	63.0	182.3	55.1	10.4	
Queue Length 50th (m)	110.6	~370.7	75.3	43.4	~170.9	0.0	43.7	39.0	~139.9	29.9	0.0	
Queue Length 95th (m)	#172.5	#397.3	130.8	#96.9	#217.3	32.2	62.7	49.5	#195.8	41.6	22.3	
Internal Link Dist (m)		184.1			186.5			282.4		181.3		
Turn Bay Length (m)	100.0		100.0	80.0		125.0	80.0		60.0		30.0	
Base Capacity (vph)	439	1977	835	210	1319	718	268	567	292	585	469	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.86	1.29	0.76	0.68	1.01	0.59	0.49	0.47	1.24	0.35	0.54	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum offer two system

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{i}	4	+	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>٦</u>	***	1	ሻ	***	1	٦	ፋጉ		<u>۲</u>	- ††	1
Volume (veh/h)	346	2344	581	137	1281	410	123	147	68	315	179	222
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1796	1796	1796	1729	1729	1729	1667	1667	1850	1652	1652	1652
Adj Flow Rate, veh/h	376	2548	0	143	1334	0	106	228	0	362	206	0
Adj No. of Lanes	1	3	1	1	3	1	1	2	0	1	2	1
Peak Hour Factor	0.92	0.92	0.92	0.96	0.96	0.96	0.85	0.85	0.85	0.87	0.87	0.87
Percent Heavy Veh, %	3	3	3	7	7	7	11	11	11	12	12	12
Cap, veh/h	396	2447	762	110	1577	491	144	303	0	294	586	262
Arrive On Green	0.23	0.50	0.00	0.07	0.33	0.00	0.09	0.09	0.00	0.19	0.19	0.00
Sat Flow, veh/h	1711	4903	1527	1647	4720	1470	1587	3333	0	1573	3138	1404
Grp Volume(v), veh/h	376	2548	0	143	1334	0	106	228	0	362	206	0
Grp Sat Flow(s),veh/h/ln	1711	1634	1527	1647	1573	1470	1587	1667	0	1573	1569	1404
Q Serve(g_s), s	32.5	74.9	0.0	10.0	39.3	0.0	9.8	10.0	0.0	28.0	8.6	0.0
Cycle Q Clear(g_c), s	32.5	74.9	0.0	10.0	39.3	0.0	9.8	10.0	0.0	28.0	8.6	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	396	2447	762	110	1577	491	144	303	0	294	586	262
V/C Ratio(X)	0.95	1.04	0.00	1.30	0.85	0.00	0.73	0.75	0.00	1.23	0.35	0.00
Avail Cap(c_a), veh/h	405	2447	762	110	1577	491	296	622	0	294	586	262
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	0.81	0.81	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	56.8	37.6	0.0	70.0	46.3	0.0	66.4	66.5	0.0	61.0	53.1	0.0
Incr Delay (d2), s/veh	31.7	30.0	0.0	187.5	5.8	0.0	5.7	3.1	0.0	130.7	0.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	18.8	40.6	0.0	10.3	17.9	0.0	4.5	4.8	0.0	22.8	3.7	0.0
LnGrp Delay(d),s/veh	88.5	67.6	0.0	257.5	52.1	0.0	72.2	69.6	0.0	191.7	53.5	0.0
LnGrp LOS	F	F		F	D		Е	Е		F	D	
Approach Vol, veh/h		2924			1477			334			568	
Approach Delay, s/veh		70.3			72.0			70.4			141.6	
Approach LOS		E			E			E			F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	14.5	80.9		34.5	39.2	56.1		20.1				
Change Period (Y+Rc), s	4.5	6.0		6.5	4.5	6.0		6.5				
Max Green Setting (Gmax), s	10.0	60.5		28.0	35.5	35.0		28.0				
Max Q Clear Time (g_c+I1), s	12.0	76.9		30.0	34.5	41.3		12.0				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.3	0.0		1.6				
Intersection Summary												
HCM 2010 Ctrl Delay			78.4									
HCM 2010 LOS			E									
Notes												

Notes

User approved volume balancing among the lanes for turning movement.

	4	+	-\$►	≯	*	-1
Phase Number	1	2	4	5	6	8
Movement	WBL	EBT	SBTL	EBL	WBT	NBTL
Lead/Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Min	None	None	C-Min	None
Maximum Split (s)	14.5	66.5	34.5	40	41	34.5
Maximum Split (%)	9.7%	44.3%	23.0%	26.7%	27.3%	23.0%
Minimum Split (s)	9.5	27	34.5	9.5	27	34.5
Yellow Time (s)	3.5	4.5	3.5	3.5	4.5	3.5
All-Red Time (s)	1	1.5	3	1	1.5	3
Minimum Initial (s)	5	20	10	5	20	10
Vehicle Extension (s)	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0
Walk Time (s)		8	8		8	8
Flash Dont Walk (s)		13	20		13	20
Dual Entry	No	Yes	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes
Start Time (s)	110	124.5	41	110	0	75.5
End Time (s)	124.5	41	75.5	0	41	110
Yield/Force Off (s)	120	35	69	145.5	35	103.5
Yield/Force Off 170(s)	120	22	49	145.5	22	83.5
Local Start Time (s)	110	124.5	41	110	0	75.5
Local Yield (s)	120	35	69	145.5	35	103.5
Local Yield 170(s)	120	22	49	145.5	22	83.5
Intersection Summary						
Cycle Length			150			
Control Type	Actua	ted-Coor	dinated			
Natural Cycle			150			

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Splits and Phases: 4: 12 Street & McKnight Boulevard

	٠	→	-	*	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	229	1242	2535	249	483	651
v/c Ratio	0.80	0.41	1.06	0.32	0.59	0.89
Control Delay	39.5	9.7	64.8	16.3	33.6	24.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.5	9.7	64.8	16.3	33.6	24.8
Queue Length 50th (m)	26.9	39.2	~196.1	21.5	42.0	34.6
Queue Length 95th (m)	52.1	58.7	#279.6	51.4	43.0	41.3
Internal Link Dist (m)		180.4	169.9		282.4	
Turn Bay Length (m)	60.0			20.0		20.0
Base Capacity (vph)	446	3051	2384	768	1052	805
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.51	0.41	1.06	0.32	0.46	0.81
Intersection Summary						
	ity anono is	theoreti		~		

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	٠	-+	+	•	4	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	<u></u>	***	***		ካካ	1		
Volume (veh/h)	208	TTT 1130	TTT 2256	222	367	495		
Number	208 5	1130	2230 6	16	307 7	490 14		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0	0	1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1745	1745	1814	1814	1779	1779		
Adj Flow Rate, veh/h	229	1242	2535	0	483	0		
Adj No. of Lanes	1	3	3	1	2	1		
Peak Hour Factor	0.91	0.91	0.89	0.89	0.76	0.76		
Percent Heavy Veh, %	6	6	2	2	4	4		
Cap, veh/h	275	3321	2732	851	633	291		
Arrive On Green	0.11	0.70	0.55	0.00	0.19	0.00		
Sat Flow, veh/h	1662	4922	5115	1542	3287	1512		
Grp Volume(v), veh/h	229	1242	2535	0	483	0		
Grp Sat Flow(s), veh/h/ln	1662	1588	1650	1542	1643	1512		
Q Serve(g_s), s	7.8	10.2	44.7	0.0	13.2	0.0		
Cycle Q Clear(g_c), s	7.8	10.2	44.7	0.0	13.2	0.0		
Prop In Lane	1.00	10.2		1.00	1.00	1.00		
Lane Grp Cap(c), veh/h	275	3321	2732	851	633	291		
V/C Ratio(X)	0.83	0.37	0.93	0.00	0.76	0.00		
Avail Cap(c_a), veh/h	471	3321	2732	851	1055	485		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.96	0.00		
Uniform Delay (d), s/veh	28.0	5.9	19.6	0.00	36.3	0.00		
Incr Delay (d2), s/veh	6.5	0.3	7.0	0.0	1.9	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	6.3	4.5	22.0	0.0	6.1	0.0		
LnGrp Delay(d),s/veh	34.5	6.2	26.5	0.0	38.2	0.0		
LnGrp LOS	С.,-С	A	20.0 C	0.0	00.2 D	0.0		
Approach Vol, veh/h		1471	2535		483			
Approach Delay, s/veh		10.6	2000		38.2			
Approach LOS		10.0 B	20.5 C		50.2 D			
						_		
Timer	1	2	3	4	5	6	7	
Assigned Phs		2		4	5	6		
Phs Duration (G+Y+Rc), s		72.2		22.8	13.8	58.4		
Change Period (Y+Rc), s		6.0		4.5	3.0	6.0		
Max Green Setting (Gmax), s		54.0		30.5	22.0	29.0		
Max Q Clear Time (g_c+l1), s		12.2		15.2	9.8	46.7		
Green Ext Time (p_c), s		38.1		3.1	1.0	0.0		
Intersection Summary								
HCM 2010 Ctrl Delay			22.6					
HCM 2010 LOS			C					
-			-					

	4	e 🖡	٠	44
Phase Number	2	4	5	6
Movement	EBTL	SBL	EBL	WBT
Lead/Lag			Lead	Lag
Lead-Lag Optimize			Yes	Yes
Recall Mode	C-Min	None	None	C-Min
Maximum Split (s)	60	35	25	35
Maximum Split (%)	63.2%	36.8%	26.3%	36.8%
Minimum Split (s)	26	33.5	8	27
Yellow Time (s)	4.5	3.5	3	4.5
All-Red Time (s)	1.5	1	0	1.5
Minimum Initial (s)	20	10	5	20
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	U	8	Ū	8
Flash Dont Walk (s)		21		13
Dual Entry	Yes	No	No	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	70	35	70	0
End Time (s)	35	70	0	35
Yield/Force Off (s)	29	65.5	92	29
Yield/Force Off 170(s)	29	44.5	92	16
Local Start Time (s)	23 70	35	52 70	0
Local Yield (s)	29	65.5	92	29
Local Yield 170(s)	29	44.5	92	16
	20			10
Intersection Summary				
Cycle Length	. .		95	
Control Type	Actua	ted-Coor		
Natural Cycle	(l	FDT	130	0
Offset: 0 (0%), Referenced	to phase 2	EBILan	d6:WBI,	Start of G
	A C	10 0 1 ·		
Splits and Phases: 1: 32	Avenue &	12 Street		
2				

Queues 4: 12 Street & McKnight Boulevard

	٠	→	7	1	-	*	1	t	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	222	1436	145	74	1827	681	350	679	498	135	443	
v/c Ratio	1.48	0.80	0.22	0.67	1.08	0.78	1.16	1.03	1.47	0.20	1.07	
Control Delay	290.3	44.1	5.3	92.1	89.2	15.8	151.9	90.0	267.4	47.6	99.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	290.3	44.1	5.3	92.1	89.2	15.8	151.9	90.0	267.4	47.6	99.9	
Queue Length 50th (m)	~88.6	137.7	0.0	21.4	~216.6	39.1	~132.3	~104.5	~199.0	17.4	~108.0	
Queue Length 95th (m)	#142.4	157.9	14.8	#43.9	#247.4	97.6	#172.1	#120.3	#270.3	27.6	#177.9	
Internal Link Dist (m)		184.1			186.5			282.4		181.3		
Turn Bay Length (m)	100.0		100.0	80.0		125.0	80.0		60.0		30.0	
Base Capacity (vph)	150	1785	647	116	1697	876	301	660	338	676	414	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.48	0.80	0.22	0.64	1.08	0.78	1.16	1.03	1.47	0.20	1.07	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	+	7	1	+	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	***	1	1	***	1	ሻ	4î þ		1	††	7
Volume (veh/h)	209	1350	136	71	1754	654	359	256	219	478	130	425
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1779	1779	1779	1814	1814	1814	1745	1745	1850	1779	1779	1779
Adj Flow Rate, veh/h	222	1436	0	74	1827	0	253	582	0	498	135	0
Adj No. of Lanes	1	3	1	1	3	1	1	2	0	1	2	1
Peak Hour Factor	0.94	0.94	0.94	0.96	0.96	0.96	0.81	0.81	0.81	0.96	0.96	0.96
Percent Heavy Veh, %	4	4	4	2	2	2	6	6	6	4	4	4
Cap, veh/h	151	1897	591	93	1758	547	312	656	0	339	676	302
Arrive On Green	0.09	0.39	0.00	0.05	0.36	0.00	0.19	0.19	0.00	0.20	0.20	0.00
Sat Flow, veh/h	1694	4856	1512	1727	4951	1542	1662	3491	0	1694	3380	1512
Grp Volume(v), veh/h	222	1436	0	74	1827	0	253	582	0	498	135	0
Grp Sat Flow(s), veh/h/ln	1694	1619	1512	1727	1650	1542	1662	1745	Ő	1694	1690	1512
Q Serve(g_s), s	12.5	35.8	0.0	5.9	49.7	0.0	20.4	22.8	0.0	28.0	4.7	0.0
Cycle Q Clear(\underline{q}_c), s	12.5	35.8	0.0	5.9	49.7	0.0	20.4	22.8	0.0	28.0	4.7	0.0
Prop In Lane	1.00	00.0	1.00	1.00	-10.1	1.00	1.00	22.0	0.00	1.00	-1.7	1.00
Lane Grp Cap(c), veh/h	151	1897	591	93	1758	547	312	656	0.00	339	676	302
V/C Ratio(X)	1.47	0.76	0.00	0.80	1.04	0.00	0.81	0.89	0.00	1.47	0.20	0.00
Avail Cap(c_a), veh/h	151	1897	591	117	1758	547	332	698	0.00	339	676	302
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	0.82	0.82	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	63.8	36.9	0.00	65.5	45.1	0.0	54.5	55.4	0.00	56.0	46.7	0.00
Incr Delay (d2), s/veh	242.8	2.9	0.0	25.3	32.5	0.0	11.1	10.8	0.0	226.9	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	16.0	16.5	0.0	3.5	27.9	0.0	10.4	12.0	0.0	34.4	2.2	0.0
LnGrp Delay(d),s/veh	306.6	39.8	0.0	90.8	77.6	0.0	65.6	66.2	0.0	282.9	46.8	0.0
LnGrp LOS	500.0 F	535.0 D	0.0	50.0 F	77.0 F	0.0	60.0 E	00.2 E	0.0	202.9 F	0.0 D	0.0
Approach Vol, veh/h		1658			1901		L	835		· ·	633	
Approach Delay, s/veh		75.5			78.1			66.0			232.5	
Approach LOS		73.5 E			70.1 E			00.0 E			202.5 F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.0	60.7		34.5	17.0	55.7		32.8				
Change Period (Y+Rc), s	4.5	6.0		6.5	4.5	6.0		6.5				
Max Green Setting (Gmax), s	9.5	51.0		28.0	12.5	48.0		28.0				
Max Q Clear Time (g_c+l1), s	7.9	37.8		30.0	14.5	51.7		24.8				
Green Ext Time (p_c), s	0.0	12.1		0.0	0.0	0.0		1.5				
Intersection Summary												
HCM 2010 Ctrl Delay			94.7									
HCM 2010 LOS			F									
Notes												

Notes

User approved volume balancing among the lanes for turning movement.

Phase Number 1 2 4 5 6 8 Movement WBL EBT SBTL EBL WBT NBTL Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize Yes Yes Yes Yes Yes Yes Recall Mode None C-Min None None C-Min None Maximum Split (s) 14 57 34.5 17 54 34.5 Maximum Split (s) 9.5 27 34.5 9.5 27 34.5 Yellow Time (s) 3.5 4.5 3.5 3.5 4.5 3.5 All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 3 3 3 3 3 3 </th
Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize Yes Yes Yes Yes Yes Recall Mode None C-Min None None C-Min None Maximum Split (s) 14 57 34.5 17 54 34.5 Maximum Split (s) 10.0% 40.7% 24.6% 12.1% 38.6% 24.6% Minimum Split (s) 9.5 27 34.5 9.5 27 34.5 Yellow Time (s) 3.5 4.5 3.5 3.5 4.5 3.5 All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 Minimum Gap (s) 0 0 0 0 0 0 0 Vehicle Extension (s) 0 0 0 0
Lead-Lag Optimize Yes Yes Yes Yes Yes Recall Mode None C-Min None None C-Min None Maximum Split (s) 14 57 34.5 17 54 34.5 Maximum Split (s) 10.0% 40.7% 24.6% 12.1% 38.6% 24.6% Minimum Split (s) 9.5 27 34.5 9.5 27 34.5 Yellow Time (s) 3.5 4.5 3.5 3.5 4.5 3.5 All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 3 Time Before Reduce (s) 0 0 0 0 0 0 0 Valk Time (s) 123 13 20 13 20 13 20 13 20
Recall Mode None C-Min None None C-Min None Maximum Split (s) 14 57 34.5 17 54 34.5 Maximum Split (s) 10.0% 40.7% 24.6% 12.1% 38.6% 24.6% Minimum Split (s) 9.5 27 34.5 9.5 27 34.5 Yellow Time (s) 3.5 4.5 3.5 3.5 4.5 3.5 All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 3 Minimum Gap (s) 3
Maximum Split (s)145734.5175434.5Maximum Split (%)10.0%40.7%24.6%12.1%38.6%24.6%Minimum Split (s)9.52734.59.52734.5Yellow Time (s)3.54.53.53.54.53.5All-Red Time (s)11.5311.53Minimum Initial (s)5201052010Vehicle Extension (s)333333Minimum Gap (s)333333Time Before Reduce (s)000000Time To Reduce (s)000000Walk Time (s)88888Flash Dont Walk (s)1320132020Dual EntryNoYesYesYesYesInhibit MaxYesYesYesYesYesStart Time (s)1375488.5054Ind Time (s)132.54882135.548116.5Yield/Force Off (s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Maximum Split (%)10.0%40.7%24.6%12.1%38.6%24.6%Minimum Split (s)9.52734.59.52734.5Yellow Time (s)3.54.53.53.54.53.5All-Red Time (s)11.5311.53Minimum Initial (s)5201052010Vehicle Extension (s)333333Minimum Gap (s)333333Time Before Reduce (s)000000Valk Time (s)88888Rash Dont Walk (s)1320132013Dual EntryNoYesYesYesYesYesInhibit MaxYesYesYesYesYesYesStart Time (s)1375488.5054123Yield/Force Off (s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Minimum Split (s) 9.5 27 34.5 9.5 27 34.5 Yellow Time (s) 3.5 4.5 3.5 3.5 4.5 3.5 3.5 4.5 3.5 All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 3 Minimum Gap (s) 3
Yellow Time (s) 3.5 4.5 3.5 3.5 4.5 3.5 All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 Minimum Gap (s) 3 3 3 3 3 3 3 3 Time Before Reduce (s) 0 0 0 0 0 0 0 Time To Reduce (s) 0 0 0 0 0 0 0 0 Walk Time (s) 8 8 8 8 8 8 8 8 Flash Dont Walk (s) 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 13 12
All-Red Time (s) 1 1.5 3 1 1.5 3 Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3 3 3 3 3 3 3 Minimum Gap (s) 3 3 3 3 3 3 3 3 Time Before Reduce (s) 0 0 0 0 0 0 0 Time To Reduce (s) 0 0 0 0 0 0 0 Walk Time (s) 8 8 8 8 8 8 8 8 Flash Dont Walk (s) 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 137 54 123 0 88.5 14 14 14 14 14 14 14
Minimum Initial (s) 5 20 10 5 20 10 Vehicle Extension (s) 3
Vehicle Extension (s) 3
Minimum Gap (s) 3
Time Before Reduce (s) 0
Time To Reduce (s) 0
Walk Time (s) 8 7 9 9 13 20 13 20 100
Flash Dont Walk (s) 13 20 13 20 Dual Entry No Yes Yes No Yes Yes Inhibit Max Yes Yes Yes Yes Yes Yes Yes Start Time (s) 123 137 54 123 0 88.5 End Time (s) 132.5 48 82 135.5 48 116.5 Yield/Force Off (s) 132.5 35 62 135.5 35 96.5 Local Start Time (s) 123 137 54 123 0 88.5
Dual EntryNoYesYesYesNoYesYesInhibit MaxYesYesYesYesYesYesYesStart Time (s)12313754123088.5End Time (s)1375488.5054123Yield/Force Off (s)132.54882135.548116.5Yield/Force Off 170(s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Inhibit MaxYesYesYesYesYesYesYesStart Time (s)12313754123088.5End Time (s)1375488.5054123Yield/Force Off (s)132.54882135.548116.5Yield/Force Off 170(s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Start Time (s) 123 137 54 123 0 88.5 End Time (s) 137 54 88.5 0 54 123 Yield/Force Off (s) 132.5 48 82 135.5 48 116.5 Yield/Force Off 170(s) 132.5 35 62 135.5 35 96.5 Local Start Time (s) 123 137 54 123 0 88.5
End Time (s)1375488.5054123Yield/Force Off (s)132.54882135.548116.5Yield/Force Off 170(s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Yield/Force Off (s)132.54882135.548116.5Yield/Force Off 170(s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Yield/Force Off 170(s)132.53562135.53596.5Local Start Time (s)12313754123088.5
Local Start Time (s) 123 137 54 123 0 88.5
Local Yield (s) 132.5 48 82 135.5 48 116.5
Local Yield 170(s) 132.5 35 62 135.5 35 96.5
Intersection Summary
Cycle Length 140

Cycle Length140Control TypeActuated-CoordinatedNatural Cycle150

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Splits and Phases: 4: 12 Street & McKnight Boulevard

√ ø1	₩ ø2 (R)	ø4	√ ø8
14 s	57 s	34.5 s	34.5 s
	4 [∞] ● ø6 (R)		
17 s	54 s		

June 22, 2020

Via Email: sarah.hbeichi@calgary.ca

The City of Calgary Planning & Development P.O. Box 2100, Station "M" Calgary, AB T2P 2M5

Attention: Sarah Hbeichi

Dear Ms. Hbeichi:

RE: Land Use Amendment application LOC2020-0065; Property: 3625 12 Street NE; Funeral Home and Crematorium

Square One Properties Ltd. is the registered owner of the property 1231 36 Avenue NE, located to the immediate west of the proposed Funeral Home and Crematorium. Our property contains a building with 14 bays that are leased to 9 industrial businesses. These businesses are all long term tenants who have operated from our property for many years. Our property and the surrounding properties are all zoned "Industrial-General (I-G)" District. All our tenants' businesses were open and operated from the premises during the Covid-19 pandemic emergency rules in effect.

Lack of Information

There is a complete lack of information about the application; no details other than the intent to redesignate the site to allow for the use of "Funeral Home" and "Crematorium", have been made available. For example, no information has been provided regarding the size of the assembly area for the proposed funeral home. The only information regarding the size of the potential development is the overall footprint of the existing building of 681 square metres. No information has been provided about the number of staff or business vehicles, the number of expected memorial services and visitors, the number of parking stalls, etc. In our view this information is necessary to properly assess the impact of the proposed use on the adjacent properties and businesses.

No Engagement with Stakeholders

Our property manager attempted to inquire with the applicant and property owner about the application, but to no avail; No responses were received. Furthermore, the applicant has made no attempt to engage the adjacent property owners and surrounding businesses. This is contrary to the City's engagement policies and to best practices in land use planning.

Concerns

We have several concerns with respect to the subject application. The subject parcel and surrounding parcels are all zoned I-G District. This is an industrial area with considerable traffic volumes on 12 Street NW, and the area serves as an important employment district in the city. In our opinion a funeral home is an inappropriate use for the subject location due to the expected traffic generated by the use and resulting parking issues expected from the proposed funeral home. The operation of industrial businesses in inner Calgary is important to the city's economy and we are concerned that allowing a use like a funeral home will create conflicts between the workers who rely on this area for their employment and the potential large groups of people who will visit the funeral home. We fear there will be an overflow of parking on our site and on neighboring properties. There are also no public sidewalks in the area, suggesting this area is not appropriate for large gatherings of people.

Negative Impacts on Adjacent Properties & Businesses

We are concerned that the proposed funeral home will negatively impact the use, enjoyment and value of our property and unduly affect our tenants' businesses. These tenants and businesses need unrestricted access for their clients and employees and for the delivery and pick-up of goods and products to their shops/units. Our building contains several metal fabrication shops that have deliveries by large tractor trailer vehicles. These vehicles need a large turning ratio for access and egress to the loading bays located at the rear of our building and the tenants' shops. The businesses cannot afford to have visitors of the proposed funeral home block access to and from our site. Parking on our property is at capacity and our tenants' staff typically need to park on the street. In addition, it should be noted that there is limited parking available on 36 Avenue as on-street parking on the north side of the avenue is prohibited. No parking is allowed on 12 Street. Moreover, we are concerned about the impact of funeral processions.

Municipal Development Plan

In addition, we feel that the use of a Funeral Home is incompatible within an area identified within the Municipal Development Plan (MDP) as a "Standard Industrial Area." Policies within the MDP clearly state that within Standard Industrial Areas, industrial uses should continue to be the primary use and that the retention of a broad range of industrial uses is important (Section 3.7.1). Given that a funeral home in the Bylaw is considered to be a commercial use

(or akin to a commercial use), allowing for such a use within a Standard Industrial Area would be to allow the encroachment of non-industrial uses in the general area, which could set a precedent for the erosion of our inner city industrial land supply by uses that would be better located elsewhere. The subject parcel is just too small and an inappropriate location to accommodate the propose use of a funeral home.

Transportation Impact Assessment

Our company commissioned a preliminary transportation impact assessment by JCB Engineering Ltd. (Justin Barrett, a Transportation Engineer) to evaluate the potential effects of the approval of this application. See the attached report. JCB concludes that it is expected that there will be a shortfall in parking provided on the site for the proposed funeral home and that there may not be sufficient parking on the nearby roadways of 34 Avenue NE and 36 Avenue NE to accommodate this shortfall. According to JCB a complete parking assessment should be provided to demonstrate if there will be a parking shortfall for the development.

JCB further concludes that the additional traffic expected to be generated by the funeral home will have an impact on the operation of the intersection of 12 Street and 32 Avenue NE. Primarily during the typical PM peak hour scenario, the intersection will have unacceptable operations due to the westbound approach being over capacity and competing for green time with other movements that have had their volumes increased by traffic generated by the proposed development. JCB determined that a more detailed and full transportation impact assessment is required to confirm what impacts, and the magnitude of these impacts, the traffic generated by the proposed development will have on the roadways and intersections in the area. There will also be an impact of the development generated traffic on the intersection of 12 Street and McKnight Boulevard NE. This intersection is failing under existing conditions. This demonstrates that traffic generated by the proposed use and development is more likely to use the 12 Street and 32 Avenue NE intersection and create the unacceptable operational issues noted in the JCB report.

Land Use Bylaw

It is the clear intent of the Land Use Bylaw to ensure compatibility between land uses. Based on sound planning principles, funeral homes are incompatible with general industrial areas. The Land Use Bylaw expressly and purposely limits funeral homes as a listed use to only five commercial districts: C-C2, C-COR 2, C-COR3, C-R2 and C-R3 Districts, generally to avoid an influx of vehicles and customers on industrial roads that are intended for trucks and the movement of goods that are critical to our city's economy. Funeral homes are located in the larger commercial land use districts that can accommodate parking or shared parking and good access to major roads. Due to associated traffic and parking demand, under the Land Use Bylaw the use of "Funeral Home" is more akin to commercial uses. Hence why the Bylaw treats it as such. For your information, there is a funeral home located at 4715 13 Street NE, south of McKnight Boulevard. However, according to a review of the City records, that funeral home does not have development permit approval, in contravention of the Land Use Bylaw and the I-G zoning of the site does not allow the use. Therefore, it cannot be used as a reference for approval of the subject land use application.

In case the City Administration would recommend approval of the land use amendment application, we respectfully request that the City Administration requires the applicant to submit a concurrent development permit application to enable a proper assessment of the proposed land use application so that impacts can be evaluated holistically.

Conclusion

In conclusion, for the aforementioned reasons we are opposed to the proposed land use amendment. From a planning and transportation perspective, the subject parcel is an inappropriate location for the use of a funeral home.

Sincerely, Dan^VBrink

Square One Properties Ltd.

Encl.: Report JCB Engineering Ltd.

Cc: Ward Councillor (ray.jones@calgary.ca)